Ranjith-Kumar C T, Sarisky R T, Gutshall L, Thomson M, Kao C C
Department of Biochemistry and Biophysics, Texas A&M University, Mail Stop 2128, College Station, TX 77843, USA.
J Virol. 2004 Nov;78(22):12207-17. doi: 10.1128/JVI.78.22.12207-12217.2004.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) has several distinct biochemical activities, including initiation of RNA synthesis by a de novo mechanism, extension from a primed template, nontemplated nucleotide addition, and synthesis of a recombinant RNA product from two or more noncovalently linked templates (template switch). All of these activities require specific interaction with nucleoside triphosphates (NTPs). Based on the structure of the HCV RdRp bound to NTP (S. Bressanelli, L. Tomei, F. A. Rey, and R. DeFrancesco, J. Virol. 76:3482-3492, 2002), we mutated the amino acid residues that contact the putative initiation GTP and examined the effects on the various activities. Although all mutations retained the ability for primer extension, alanine substitution at R48, R158, R386, R394, or D225 decreased de novo initiation, and two or more mutations abolished de novo initiation. While the prototype enzyme had a K(m) for GTP of 3.5 microM, all of the mutations except one had K(m)s that were three- to sevenfold higher. These results demonstrate that the affected residues are functionally required to interact with the initiation nucleotide. Unexpectedly, many of the mutations also affected the addition of nontemplated nucleotide, indicating that residues in the initiating NTP (NTPi)-binding pocket are required for nontemplated nucleotide additions. Interestingly, mutations in D225 are dramatically affected in template switch, indicating that this residue of the NTPi pocket also interacts with components in the elongation complex. We also examined the interaction of ribavirin triphosphate with the NTPi-binding site.
丙型肝炎病毒(HCV)的RNA依赖RNA聚合酶(RdRp)具有多种不同的生化活性,包括通过从头合成机制起始RNA合成、从带引物的模板进行延伸、非模板依赖性核苷酸添加以及从两个或更多非共价连接的模板合成重组RNA产物(模板转换)。所有这些活性都需要与核苷三磷酸(NTP)进行特异性相互作用。基于与NTP结合的HCV RdRp的结构(S. Bressanelli、L. Tomei、F. A. Rey和R. DeFrancesco,《病毒学杂志》76:3482 - 3492,2002年),我们对与假定起始GTP接触的氨基酸残基进行了突变,并研究了其对各种活性的影响。尽管所有突变都保留了引物延伸能力,但在R48、R158、R386、R394或D225处的丙氨酸替代降低了从头起始,两个或更多突变则消除了从头起始。虽然原型酶对GTP的K(m)为3.5微摩尔,但除一个突变外,所有突变的K(m)值都高3至7倍。这些结果表明,受影响的残基在功能上需要与起始核苷酸相互作用。出乎意料的是,许多突变还影响了非模板依赖性核苷酸的添加,表明起始NTP(NTPi)结合口袋中的残基对于非模板依赖性核苷酸添加是必需的。有趣的是,D225处的突变在模板转换中受到显著影响,表明NTPi口袋中的这个残基也与延伸复合物中的成分相互作用。我们还研究了三磷酸利巴韦林与NTPi结合位点的相互作用。