Suppr超能文献

Rotation of the exo-methylene group of (R)-3-methylitaconate catalyzed by coenzyme B(12)-dependent 2-methyleneglutarate mutase from Eubacterium barkeri.

作者信息

Pierik Antonio J, Ciceri Daniele, Bröker Gerd, Edwards Christopher H, McFarlane William, Winter Joachim, Buckel Wolfgang, Golding Bernard T

机构信息

Department of Chemistry, Bedson Building, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, U.K.

出版信息

J Am Chem Soc. 2002 Nov 27;124(47):14039-48. doi: 10.1021/ja020340f.

Abstract

2-Methyleneglutarate mutase from the anaerobe Eubacterium (Clostridium) barkeri is an adenosylcobalamin (coenzyme B(12))-dependent enzyme that catalyzes the equilibration of 2-methyleneglutarate with (R)-3-methylitaconate. Two possibilities for the mechanism of the carbon skeleton rearrangement of the substrate-derived radical to the product-related radical are considered. In both mechanisms an acrylate group migrates from C-3 of 2-methyleneglutarate to C-4. In the "addition-elimination" mechanism this 1,2-shift occurs via an intermediate, a 1-methylenecyclopropane-1,2-dicarboxylate radical, in which the migrating acrylate is simultaneously attached to both C-3 and C-4. In the "fragmentation-recombination" mechanism the migrating group, a 2-acrylyl radical, becomes detached from C-3 before it starts bonding to C-4. In an attempt to distinguish between these two possibilities we have investigated the action of 2-methyleneglutarate mutase on the stereospecifically deuterated substrates (Z)-3-methyl[2'-(2)H(1)]itaconate and (Z)-3-[2'-(2)H(1),methyl-(2)H(3)]methylitaconate. The enzyme catalyzes the equilibration of both compounds with their corresponding E-isomers and with a 1:1 mixture of the corresponding (E)- and (Z)-2-methylene[2'-(2)H(1)]glutarates, as shown by monitoring of the reactions with (1)H and (2)H NMR. In the initial phase of the enzyme-catalyzed equilibration a significant excess (8-11%) of (E)-3-methyl[2'-(2)H(1)]itaconate over its equilibrium value was observed ("E-overshoot"). The E-overshoot was only 3-4% with (Z)-3-[2'-(2)H(1),methyl-(2)H(3)]methylitaconate because the presence of the deuterated methyl group raises the energy barrier from 3-methylitaconate to the corresponding radical. The overshoot is explained by postulating that the migrating acrylate group has to overcome an additional energy barrier from the state leading back to the substrate-derived radical to the state leading forward to the product-related radical. It is concluded that the fragmentation-recombination mechanism can provide an explanation for the results in terms of an additional energy barrier, despite the higher calculated activation energy for this pathway.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验