Lévesque D, Blouin A, Néron C, Monchalin J-P
Industrial Materials Institute, National Research Council of Canada, 75 de Mortagne Blvd., Boucherville, Que., Canada, J4B 6Y4.
Ultrasonics. 2002 Dec;40(10):1057-63. doi: 10.1016/s0041-624x(02)00256-1.
The resolution and signal-to-noise ratio of laser-ultrasonics to detect small and buried defects can be greatly enhanced by using the synthetic aperture focusing technique (SAFT). Originally developed in the time domain, SAFT can also be implemented in the frequency domain (F-SAFT) using the angular spectrum approach for a significant reduction in processing time. In this paper, an F-SAFT based data processing method especially adapted to laser-ultrasonic data is presented. This method allows for further significant improvements towards laser-ultrasonic imaging of small defects. It includes temporal deconvolution of the waveform data, control for an optimal aperture and frequency bandwidth as well as spatial interpolation of the subsurface images. All the above operations are well adapted to the frequency domain calculations and embedded in the F-SAFT data processing. Also, the aperture control and spatial interpolation allow a reduction of sampling requirements to further decrease both inspection and processing times. The above improvements are illustrated using laser-ultrasonic data taken from an aluminum sample with flat-bottom holes.
通过使用合成孔径聚焦技术(SAFT),激光超声检测微小和埋藏缺陷的分辨率和信噪比可得到极大提高。SAFT最初是在时域中开发的,也可以使用角谱方法在频域中实现(F-SAFT),从而显著减少处理时间。本文提出了一种特别适用于激光超声数据的基于F-SAFT的数据处理方法。该方法可进一步显著改进微小缺陷的激光超声成像。它包括波形数据的时间去卷积、最佳孔径和频率带宽控制以及地下图像的空间插值。上述所有操作都非常适合频域计算,并嵌入到F-SAFT数据处理中。此外,孔径控制和空间插值可降低采样要求,进一步减少检测和处理时间。使用从带有平底孔的铝样品获取的激光超声数据说明了上述改进。