Van Wijland Frédéric
Pôle Matière et Systèmes Complexes (CNRS FR2438, Université de Paris VII) and Laboratoire de physique théorique (CNRS UMR8627), Université de Paris-Sud, 91405 Orsay cedex, France.
Phys Rev Lett. 2002 Nov 4;89(19):190602. doi: 10.1103/PhysRevLett.89.190602. Epub 2002 Oct 18.
We consider systems whose steady states exhibit a nonequilibrium phase transition from an active state to one-among an infinite number-absorbing state, as some control parameter is varied across a threshold value. The pair contact process, stochastic fixed-energy sandpiles, activated random walks, and many other cellular automata or reaction-diffusion processes are covered by our analysis. We argue that the upper-critical dimension below which anomalous fluctuation driven scaling appears is d(c)=6, in contrast to a widespread belief. We provide the exponents governing the critical behavior close to or at the transition point to first order in an epsilon =6-d expansion.
我们考虑这样一些系统,当某个控制参数在阈值附近变化时,其稳态会呈现出从活跃状态到无穷多个吸收状态之一的非平衡相变。我们的分析涵盖了对接触过程、随机固定能量沙堆模型、活化随机游走以及许多其他元胞自动机或反应扩散过程。与普遍观点不同,我们认为出现反常涨落驱动标度的上临界维度为d(c)=6。我们给出了在ε=6-d展开中,控制靠近或处于转变点的临界行为至一阶的指数。