Zhou Wei-Xing, Sornette Didier
Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90095, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Oct;66(4 Pt 2):046111. doi: 10.1103/PhysRevE.66.046111. Epub 2002 Oct 14.
We introduce a generalization of the q analysis, which provides a nonparametric tool for the description and detection of log-periodic structures associated with discrete scale invariance. We use this generalized q analysis to construct a signature called the (H,q) derivative of discrete scale invariance, which we use to detect the log-periodicity in the cumulative energy release preceding the rupture of five pressure tanks made of composite carbon-matrix material. We investigate the significance level of the spectral Lomb periodogram of the optimal (H,q) derivative. We confirm and strengthen previous parametric results that the cumulative energy release exhibits log-periodicity before rupture. However, our tests to use this method as a scheme for the prediction of the critical value of the stress at rupture are not encouraging.
我们引入了q分析的一种推广,它为描述和检测与离散尺度不变性相关的对数周期结构提供了一种非参数工具。我们使用这种广义q分析来构建一个称为离散尺度不变性的(H,q)导数的特征,并用它来检测五个由复合碳基材料制成的压力罐破裂前累积能量释放中的对数周期性。我们研究了最优(H,q)导数的频谱Lomb周期图的显著性水平。我们证实并强化了之前的参数结果,即累积能量释放在破裂前呈现对数周期性。然而,我们将此方法用作预测破裂时应力临界值方案的测试结果并不乐观。