Suppr超能文献

(2 + 1)维系统中的局域激发

Localized excitations in (2+1)-dimensional systems.

作者信息

Tang Xiao-Yan, Lou Sen-Yue, Zhang Ying

机构信息

Physics Department of Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Oct;66(4 Pt 2):046601. doi: 10.1103/PhysRevE.66.046601. Epub 2002 Oct 1.

Abstract

By means of a special variable separation approach, a common formula with some arbitrary functions has been obtained for some suitable physical quantities of various (2+1)-dimensional models such as the Davey-Stewartson (DS) model, the Nizhnik-Novikov-Veselov (NNV) system, asymmetric NNV equation, asymmetric DS equation, dispersive long wave equation, Broer-Kaup-Kupershmidt system, long wave-short wave interaction model, Maccari system, and a general (N+M)-component Ablowitz-Kaup-Newell-Segur (AKNS) system. Selecting the arbitrary functions appropriately, one may obtain abundant stable localized interesting excitations such as the multidromions, lumps, ring soliton solutions, breathers, instantons, etc. It is shown that some types of lower dimensional chaotic patterns such as the chaotic-chaotic patterns, periodic-chaotic patterns, chaotic line soliton patterns, chaotic dromion patterns, fractal lump patterns, and fractal dromion patterns may be found in higher dimensional soliton systems. The interactions between the traveling ring type soliton solutions are completely elastic. The traveling ring solitons pass through each other and preserve their shapes, velocities, and phases. Some types of localized weak solutions, peakons, are also discussed. Especially, the interactions between two peakons are not completely elastic. After the interactions, the traveling peakons also pass through each other and preserve their velocities and phases, however, they completely exchange their shapes.

摘要

通过一种特殊的变量分离方法,对于诸如戴维 - 斯图尔特森(DS)模型、尼兹尼克 - 诺维科夫 - 韦谢洛夫(NNV)系统、非对称NNV方程、非对称DS方程、色散长波方程、布勒 - 考普 - 库佩施密特系统、长波 - 短波相互作用模型、马卡里系统以及一般的(N + M)分量阿布洛维茨 - 考普 - 纽厄尔 - 西古尔(AKNS)系统等各种(2 + 1)维模型的一些合适的物理量,已经得到了一个带有一些任意函数的通用公式。适当地选择任意函数,可以得到丰富的稳定局域化有趣激发,如多孤子、团块、环形孤子解、呼吸子、瞬子等。结果表明,在高维孤子系统中可能会发现一些低维混沌模式,如混沌 - 混沌模式、周期 - 混沌模式、混沌线孤子模式、混沌孤子模式、分形团块模式和分形孤子模式。行波环形孤子解之间的相互作用是完全弹性的。行波环形孤子相互穿过并保持它们的形状、速度和相位。还讨论了一些类型的局域弱解,即尖峰子。特别是,两个尖峰子之间的相互作用不是完全弹性的。相互作用后,行波尖峰子也相互穿过并保持它们的速度和相位,然而,它们完全交换了形状。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验