Zarmi Yair
The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel.
PLoS One. 2016 Mar 1;11(3):e0148993. doi: 10.1371/journal.pone.0148993. eCollection 2016.
Slower-than-light multi-front solutions of the Sine-Gordon in (1+2) dimensions, constructed through the Hirota algorithm, are mapped onto spatially localized structures, which emulate free, spatially extended, massive relativistic particles. A localized structure is an image of the junctions at which the fronts intersect. It propagates together with the multi-front solution at the velocity of the latter. The profile of the localized structure obeys the linear wave equation in (1+2) dimensions, to which a term that represents interaction with a slower-than-light, Sine-Gordon-multi-front solution has been added. This result can be also formulated in terms of a (1+2)-dimensional Lagrangian system, in which the Sine-Gordon and wave equations are coupled. Expanding the Euler-Lagrange equations in powers of the coupling constant, the zero-order part of the solution reproduces the (1+2)-dimensional Sine-Gordon fronts. The first-order part is the spatially localized structure.
02.30.Ik, 03.65.Pm, 05.45.Yv, 02.30.Ik.
通过广田算法构造的(1 + 2)维正弦 - 戈登方程的慢于光速的多前沿解,被映射到空间局部化结构上,这些结构模拟了自由的、空间扩展的、有质量的相对论粒子。局部化结构是前沿相交处的结点的图像。它与多前沿解一起以后者的速度传播。局部化结构的轮廓服从(1 + 2)维线性波动方程,该方程添加了一个表示与慢于光速的正弦 - 戈登多前沿解相互作用的项。这个结果也可以用一个(1 + 2)维拉格朗日系统来表述,其中正弦 - 戈登方程和波动方程是耦合的。将欧拉 - 拉格朗日方程按耦合常数的幂次展开,解的零阶部分再现了(1 + 2)维正弦 - 戈登前沿。一阶部分是空间局部化结构。
02.30.Ik,03.65.Pm,05.45.Yv,02.30.Ik。