Dmitriev Sergey V, Semagin Denis A, Sukhorukov Andrey A, Shigenari Takeshi
Department of Applied Physics and Chemistry, University of Electro-Communications, Chofugaoka 1-5-1, Chofu-shi, Tokyo 182-8585, Japan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Oct;66(4 Pt 2):046609. doi: 10.1103/PhysRevE.66.046609. Epub 2002 Oct 14.
We analyze the exact two-soliton solution to the unperturbed nonlinear Schrödinger equation and predict that in a weakly perturbed system (i) soliton collisions can be strongly inelastic, (ii) inelastic collisions are of almost nonradiating type, (iii) results of a collision are extremely sensitive to the relative phase of solitons, and (iv) the effect is independent on the particular type of perturbation. In the numerical study we consider two different types of perturbation and confirm the predictions. We also show that this effect is a reason for chaotic soliton scattering. For applications, where the inelasticity of collision, induced by a weak perturbation, is undesirable, we propose a method of compensating it by perturbation of another type.
我们分析了未受扰动的非线性薛定谔方程的精确双孤子解,并预测在弱扰动系统中:(i)孤子碰撞可能是强非弹性的;(ii)非弹性碰撞几乎是非辐射型的;(iii)碰撞结果对孤子的相对相位极其敏感;(iv)该效应与扰动的具体类型无关。在数值研究中,我们考虑了两种不同类型的扰动并证实了这些预测。我们还表明,这种效应是混沌孤子散射的一个原因。对于那些由弱扰动引起的碰撞非弹性不可取的应用,我们提出了一种通过另一种类型的扰动来补偿它的方法。