Choi Yeon-Mu, Kim Hyun-Joo, Kim In-Mook
Center for Liberal Arts and Instructional Development, Myongji University, Yongin, Kyonggi-Do, 449-728, Korea.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Oct;66(4 Pt 2):047102. doi: 10.1103/PhysRevE.66.047102. Epub 2002 Oct 14.
We introduce two self-organized growth models that describe the motion of the driven interfaces in random media including the Kardar-Parisi-Zhang (KPZ) nonlinearity. One model follows the quenched KPZ equation with a positive nonlinear term, while the other model follows the quenched KPZ equation with a negative nonlinear term. By obtaining the critical exponents for two models, we confirm that the sign of the KPZ nonlinear term does not affect the universality class.
我们引入了两种自组织生长模型,它们描述了随机介质中受驱动界面的运动,其中包括 Kardar-Parisi-Zhang(KPZ)非线性项。一种模型遵循带有正非线性项的淬火 KPZ 方程,而另一种模型遵循带有负非线性项的淬火 KPZ 方程。通过获得这两种模型的临界指数,我们证实了 KPZ 非线性项的符号不影响普适类。