Jana Debayan, Haldar Astik, Basu Abhik
Theory Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Calcutta 700064, West Bengal, India.
Department of Theoretical Physics & Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany.
Phys Rev E. 2024 Mar;109(3):L032104. doi: 10.1103/PhysRevE.109.L032104.
The Kardar-Parisi-Zhang (KPZ) equation sets the universality class for growing and roughening of nonequilibrium surfaces without any conservation law and nonlocal effects. We argue here that the KPZ equation can be generalized by including a symmetry-permitted nonlocal nonlinear term of active origin that is of the same order as the one included in the KPZ equation. Including this term, the 2D active KPZ equation is stable in some parameter regimes, in which the interface conformation fluctuations exhibit sublogarithmic or superlogarithmic roughness, with nonuniversal exponents, giving positional generalized quasi-long-ranged order. For other parameter choices, the model is unstable, suggesting a perturbatively inaccessible algebraically rough interface or positional short-ranged order. Our model should serve as a paradigmatic nonlocal growth equation.
Kardar-Parisi-Zhang(KPZ)方程为非平衡表面的生长和粗糙化设定了普适类,该表面不存在任何守恒定律和非局部效应。我们在此论证,KPZ方程可以通过纳入一个由对称性允许的、具有活性起源的非局部非线性项来进行推广,该项与KPZ方程中所包含的项具有相同的量级。包含此项后,二维活性KPZ方程在某些参数区域是稳定的,其中界面构象涨落呈现亚对数或超对数粗糙度,具有非普适指数,给出位置广义准长程有序。对于其他参数选择,该模型是不稳定的,这表明存在一个微扰不可达的代数粗糙界面或位置短程有序。我们的模型应作为一个典型的非局部生长方程。