Suppr超能文献

对数或代数形式:活性 Kardar-Parisi-Zhang 表面的粗糙化。

Logarithmic or algebraic: Roughening of an active Kardar-Parisi-Zhang surface.

作者信息

Jana Debayan, Haldar Astik, Basu Abhik

机构信息

Theory Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Calcutta 700064, West Bengal, India.

Department of Theoretical Physics & Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany.

出版信息

Phys Rev E. 2024 Mar;109(3):L032104. doi: 10.1103/PhysRevE.109.L032104.

Abstract

The Kardar-Parisi-Zhang (KPZ) equation sets the universality class for growing and roughening of nonequilibrium surfaces without any conservation law and nonlocal effects. We argue here that the KPZ equation can be generalized by including a symmetry-permitted nonlocal nonlinear term of active origin that is of the same order as the one included in the KPZ equation. Including this term, the 2D active KPZ equation is stable in some parameter regimes, in which the interface conformation fluctuations exhibit sublogarithmic or superlogarithmic roughness, with nonuniversal exponents, giving positional generalized quasi-long-ranged order. For other parameter choices, the model is unstable, suggesting a perturbatively inaccessible algebraically rough interface or positional short-ranged order. Our model should serve as a paradigmatic nonlocal growth equation.

摘要

Kardar-Parisi-Zhang(KPZ)方程为非平衡表面的生长和粗糙化设定了普适类,该表面不存在任何守恒定律和非局部效应。我们在此论证,KPZ方程可以通过纳入一个由对称性允许的、具有活性起源的非局部非线性项来进行推广,该项与KPZ方程中所包含的项具有相同的量级。包含此项后,二维活性KPZ方程在某些参数区域是稳定的,其中界面构象涨落呈现亚对数或超对数粗糙度,具有非普适指数,给出位置广义准长程有序。对于其他参数选择,该模型是不稳定的,这表明存在一个微扰不可达的代数粗糙界面或位置短程有序。我们的模型应作为一个典型的非局部生长方程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验