Corti S, Locatelli F, Donadoni C, Strazzer S, Salani S, Del Bo R, Caccialanza M, Bresolin N, Scarlato G, Comi G P
Centro Dino Ferrari, Dipartimento di Scienze Neurologiche, Università degli Studi di Milano, IRCCS Ospedale Maggiore Policlinico, Milano, Italy.
J Neurosci Res. 2002 Dec 15;70(6):721-33. doi: 10.1002/jnr.10455.
There is now evidence that bone marrow (BM) can generate cells expressing neuronal antigens in adult mouse brain. In the present study, we examined the spinal cord and dorsal root ganglia (DRG) of adult mice 3 months after BM cell transplantation from transgenic donor mice expressing the enhanced green fluorescent protein (GFP). To determine whether GFP(+) cells acquire neuroectodermal phenotypes, we tested, by immunocytochemistry followed by confocal analysis, the coexpression of the astrocytic marker glial fibrillary acidic protein (GFAP) and the neuronal markers NeuN, neurofilament (NF), and class III beta-tubulin (TuJ1). Rare GFP(+) cells coexpressing TuJ1, NF, and NeuN were found both in spinal cord and in sensory ganglia. These cells have small dimensions and short cytoplasmic processes, probably reflecting an immature phenotype. Double GFP and GFAP positivity was found only in spinal cord. To determine whether cell fusion with endogenous cells occurred, we investigated the nuclear content of cells coexpressing GFP and neuronal or astrocytic markers, demonstrating that these cells have only one nucleus and a DNA ploidy that it is not different from that of surrounding neurons and astrocytes. Large numbers of GFP(+) cells are also positively stained for F4/80, a microglial-recognizing antibody, and present a characteristic microglial-like morphology both in spinal cord and, with a higher frequency, in sensory ganglia. These data support a potential role for BM-derived stem cells in spinal cord neuroneogenesis. They also confirm that the microglial compartment within the CNS and in DRG undergoes a relatively fast turnover, with the contribution of hematopoietic stem cells. Both these findings might prove useful for the development of treatments for spinal cord neurodegenerative and acquired disorders.
现在有证据表明,骨髓(BM)能够在成年小鼠大脑中生成表达神经元抗原的细胞。在本研究中,我们检测了来自表达增强型绿色荧光蛋白(GFP)的转基因供体小鼠的骨髓细胞移植3个月后的成年小鼠脊髓和背根神经节(DRG)。为了确定GFP(+)细胞是否获得神经外胚层表型,我们通过免疫细胞化学和共聚焦分析,检测了星形胶质细胞标志物胶质纤维酸性蛋白(GFAP)与神经元标志物NeuN、神经丝(NF)和III类β-微管蛋白(TuJ1)的共表达情况。在脊髓和感觉神经节中均发现了罕见的共表达TuJ1、NF和NeuN的GFP(+)细胞。这些细胞体积小,细胞质突起短,可能反映出一种未成熟的表型。仅在脊髓中发现了GFP和GFAP双阳性细胞。为了确定是否发生了与内源性细胞的融合,我们研究了共表达GFP和神经元或星形胶质细胞标志物的细胞的核内容物,结果表明这些细胞只有一个细胞核,其DNA倍性与周围的神经元和星形胶质细胞没有差异。大量的GFP(+)细胞也被F4/80(一种识别小胶质细胞的抗体)阳性染色,并且在脊髓和感觉神经节中呈现出特征性的小胶质细胞样形态,在感觉神经节中出现的频率更高。这些数据支持了骨髓来源的干细胞在脊髓神经元发生中的潜在作用。它们还证实,中枢神经系统和DRG内的小胶质细胞区室经历相对快速的更新,造血干细胞参与其中。这两个发现对于脊髓神经退行性疾病和后天性疾病治疗方法的开发可能都有用。