Suppr超能文献

A theoretical expression for the protection associated with stoichiometric and catalytic scavengers in a single compartment model of organophosphorus poisoning.

作者信息

Sweeney Richard E, Maxwell Donald M

机构信息

RESECO, Research Engineering Consultants, PO Box 2311, Upper Darby, PA 19082-202,1 USA.

出版信息

Math Biosci. 2003 Feb;181(2):133-43. doi: 10.1016/s0025-5564(02)00154-2.

Abstract

The ability of certain organophosphorus (OP) compounds to inhibit acetylcholinesterase (AChE) has made them useful for industrial (insecticides) and military (nerve agents) purposes. We have previously published a single compartment mathematical model of the interactions between OP nerve agents and the enzymes affected by these agents. That model, which could be used to predict the LD50 of seven nerve agents in rats, has been extended to include the protective actions of stoichiometric and catalytic OP-scavenger enzymes (delivered as pretreatments) so that protective ratios attributable to the scavengers may be predicted. Prediction of expected human protection from in vitro rate constant and initial enzyme level measurements is the ultimate goal for this work. The enhanced model predicts the LD50 from rate constants of the OP agent's binding reactions with AChE, carboxylesterase (CaE) and a stoichiometric scavenger (S); a first-order OP elimination rate (including a contribution due to a catalytic scavenger); and whole body estimates of AChE, CaE and S. The ratio of the scavenger-treated LD50 estimate to the scavenger-free LD50 estimate provided a theoretical expression describing the scavenger's contributions to the protective ratio. Published in vivo protective ratios for two stoichiometric scavengers (fetal bovine serum AChE and human utyrylcholinesterase) against challenge by several OP agents in mice were compared with ratios predicted by the model. A linear regression analysis of in vivo protective ratios in mice versus the ratios predicted by the model from the in vitro measurements resulted in an R(2) value of 0.902. The catalytic scavenger portion of the theory could not be validated due to a lack of published data. We conclude that the one-compartment model can be used to make reasonable estimates of the protective ratio attributable to stoichiometric scavengers, but can make no conclusions regarding the ability of the model to predict catalytic scavenger protection ratios.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验