Suppr超能文献

螺旋结构的保守性有助于核糖核酸酶P RNA催化结构域中功能性金属离子的相互作用。

Conservation of helical structure contributes to functional metal ion interactions in the catalytic domain of ribonuclease P RNA.

作者信息

Kaye Nicholas M, Zahler Nathan H, Christian Eric L, Harris Michael E

机构信息

Center for RNA Molecular Biology, and Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106, USA.

出版信息

J Mol Biol. 2002 Nov 29;324(3):429-42. doi: 10.1016/s0022-2836(02)01094-x.

Abstract

Like protein enzymes, catalytic RNAs contain conserved structure motifs important for function. A universal feature of the catalytic domain of ribonuclease P RNA is a bulged-helix motif within the P1-P4 helix junction. Here, we show that changes in bulged nucleotide identity and position within helix P4 affect both catalysis and substrate binding, while a subset of the mutations resulted only in catalytic defects. We find that the proximity of the bulge to sites of metal ion coordination in P4 is important for catalysis; moving the bulge distal to these sites and deleting it had similarly large effects, while moving it proximal to these sites had only a moderate effect on catalysis. To test whether the effects of the mutations are linked to metal ion interactions, we used terbium-dependent cleavage of the phosphate backbone to probe metal ion-binding sites in the wild-type and mutant ribozymes. We detect cleavages at specific sites within the catalytic domain, including helix P4 and J3/4, which have previously been shown to participate directly in metal ion interactions. Mutations introduced into P4 cause local changes in the terbium cleavage pattern due to alternate metal ion-binding configurations with the helix. In addition, a bulge deletion mutation results in a 100-fold decrease in the single turnover cleavage rate constant at saturating magnesium levels, and a reduced affinity for magnesium ions important for catalysis. In light of the alternate terbium cleavage pattern in P4 caused by bulge deletion, this decreased ability to utilize magnesium ions for catalysis appears to be due to localized structural changes in the ribozyme's catalytic core that weaken metal ion interactions in P4 and J3/4. The information reported here, therefore, provides evidence that the universal conservation of the P4 structure is based in part on optimization of metal ion interactions important for catalysis.

摘要

与蛋白质酶一样,催化性RNA含有对功能至关重要的保守结构基序。核糖核酸酶P RNA催化结构域的一个普遍特征是P1 - P4螺旋连接处的一个凸起螺旋基序。在此,我们表明P4螺旋内凸起核苷酸的身份和位置变化会影响催化作用和底物结合,而一部分突变仅导致催化缺陷。我们发现凸起与P4中金属离子配位位点的接近程度对催化作用很重要;将凸起移至远离这些位点并删除它会产生类似的巨大影响,而将其移至靠近这些位点对催化作用只有中等影响。为了测试突变的影响是否与金属离子相互作用有关,我们利用铽依赖性磷酸主链切割来探测野生型和突变型核酶中的金属离子结合位点。我们在催化结构域内的特定位点检测到切割,包括螺旋P4和J3/4,先前已表明它们直接参与金属离子相互作用。引入P4的突变由于与螺旋的交替金属离子结合构型而导致铽切割模式发生局部变化。此外,一个凸起缺失突变导致在饱和镁水平下单周转切割速率常数降低100倍,以及对催化作用重要的镁离子亲和力降低。鉴于凸起缺失导致P4中铽切割模式的改变,这种利用镁离子进行催化的能力下降似乎是由于核酶催化核心的局部结构变化削弱了P4和J3/4中的金属离子相互作用。因此,此处报道的信息提供了证据,表明P4结构的普遍保守性部分基于对催化作用重要的金属离子相互作用的优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验