Suppr超能文献

γ-氨基丁酸转运体GAT-1的跨膜结构域I在阳离子泄漏和转运模式之间的转变中起关键作用。

Transmembrane domain I of the gamma-aminobutyric acid transporter GAT-1 plays a crucial role in the transition between cation leak and transport modes.

作者信息

Kanner Baruch I

机构信息

Department of Biochemistry, Hadassah Medical School, Hebrew University, Jerusalem 91120, Israel.

出版信息

J Biol Chem. 2003 Feb 7;278(6):3705-12. doi: 10.1074/jbc.M210525200. Epub 2002 Nov 21.

Abstract

The sodium- and chloride-dependent gamma-aminobutyric acid (GABA) transporter is essential for synaptic transmission by this neurotransmitter. GAT-1 expressed in Xenopus laevis oocytes exhibits sodium-dependent GABA-induced inward currents reflecting electrogenic sodium-coupled transport. In lithium-containing medium, GAT-1 mediates GABA-independent currents, the relationship of which to the physiological transport process is poorly understood. In this study, mutants are described that appear to be locked in this cation leak mode. When Gly(63), located in the middle of the highly conserved transmembrane domain I, was mutated to serine or cysteine, sodium-dependent GABA currents were abolished. Strikingly, these mutants exhibited robust inward currents in lithium- as well as potassium-containing media. Membrane-impermeant sulfhydryl reagents inhibited these currents of the cysteine but not of the serine mutant, indicating that this position was accessible to the external aqueous medium. The cation leak currents mediated by wild-type GAT-1 were inhibited by low millimolar sodium concentrations in a noncompetitive manner. Mutations at other positions of transmembrane domain I increased or decreased the apparent sodium affinity, as monitored by the sodium-dependent steady-state GABA currents or transient currents. In parallel, the ability of sodium to inhibit the cation leak currents was increased or decreased, respectively. Thus, transmembrane domain I of GAT-1 contains determinants controlling both sodium-coupled GABA flux and the cation leak pathway as well as the interconversion of these distinct modes. Our observations suggest the possibility that the permeation pathway in both modes shares common structural elements.

摘要

钠和氯依赖性γ-氨基丁酸(GABA)转运体对于这种神经递质的突触传递至关重要。在非洲爪蟾卵母细胞中表达的GAT-1表现出钠依赖性GABA诱导的内向电流,反映了电中性钠偶联转运。在含锂培养基中,GAT-1介导不依赖GABA的电流,其与生理转运过程的关系尚不清楚。在本研究中,描述了似乎锁定在这种阳离子泄漏模式的突变体。当位于高度保守的跨膜结构域I中部的甘氨酸(Gly)63突变为丝氨酸或半胱氨酸时,钠依赖性GABA电流被消除。引人注目的是,这些突变体在含锂以及含钾培养基中表现出强大的内向电流。膜不透性巯基试剂抑制半胱氨酸突变体的这些电流,但不抑制丝氨酸突变体的电流,表明该位置可被外部水性介质接触。野生型GAT-1介导的阳离子泄漏电流被低毫摩尔浓度的钠以非竞争性方式抑制。跨膜结构域I其他位置的突变增加或降低了表观钠亲和力,这通过钠依赖性稳态GABA电流或瞬态电流来监测。同时,钠抑制阳离子泄漏电流的能力分别增加或降低。因此,GAT-1的跨膜结构域I包含控制钠偶联GABA通量和阳离子泄漏途径以及这些不同模式相互转换的决定因素。我们的观察结果提示了两种模式下的渗透途径共享共同结构元件的可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验