Simpson Alastair G B, Lukes Julius, Roger Andrew J
Department of Biochemistry, Canadian Institute for Advanced Research, Program in Evolutionary Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7.
Mol Biol Evol. 2002 Dec;19(12):2071-83. doi: 10.1093/oxfordjournals.molbev.a004032.
Despite extensive phylogenetic analysis of small subunit ribosomal RNA (SSUrRNA) genes, the deep-level relationships among kinetoplastids remain poorly understood, limiting our grasp of their evolutionary history, especially the origins of their bizarre mitochondrial genome organizations. In this study we examine the SSUrRNA data in the light of a new marker--cytoplasmic heat shock protein 90 (hsp90) sequences. Our phylogenetic analyses divide kinetoplastids into four main clades. Clades 1-3 include the various bodonid kinetoplastids. Trypanosomatids comprise the fourth clade. SSUrRNA analyses give vastly different and poorly supported positions for the root of the kinetoplastid tree, depending on the out-group and analysis method. This is probably due to the extraordinary length of the branch between kinetoplastids and any out-group. In contrast, almost all hsp90 analyses place the root between clade 1 (including Dimastigella, Rhynchomonas, several Bodo spp., and probably Rhynchobodo) and all other kinetoplastids. Maximum likelihood and maximum likelihood distance analyses of hsp90 protein and second codon-position nucleotides place trypanosomatids adjacent to Bodo saltans and Bodo cf. uncinatus (clade 3), as (weakly) do SSUrRNA analyses. Hsp90 first codon- plus second codon-position nucleotide analyses return a slightly different topology. We show that this may be an artifact caused, in part, by the different evolutionary behavior of first- and second-codon positions. This study provides the most robust evidence to date that trypanosomatids are descended from within bodonids and that B. saltans is a close relative of trypanosomatids. A total reevaluation of the high-level systematics within kinetoplastids is needed. We confirm that the interlocking network organization of kinetoplast DNA seen in trypanosomatids is a derived condition within kinetoplastids but suggest that open-conformation minicircles may have arisen early in kinetoplastid evolution. Further understanding of the evolution of kinetoplast structure and RNA editing is hampered by a paucity of data from basal (i.e., clade 1) bodonids.
尽管对小亚基核糖体RNA(SSUrRNA)基因进行了广泛的系统发育分析,但动质体之间的深层关系仍知之甚少,这限制了我们对其进化历史的理解,尤其是它们奇异的线粒体基因组组织的起源。在本研究中,我们根据一种新的标记——细胞质热休克蛋白90(hsp90)序列来审视SSUrRNA数据。我们的系统发育分析将动质体分为四个主要分支。分支1 - 3包括各种波豆科动质体。锥虫科构成第四个分支。根据外类群和分析方法的不同,SSUrRNA分析为动质体树的根部提供了截然不同且支持度不佳的位置。这可能是由于动质体与任何外类群之间的分支异常长。相比之下,几乎所有hsp90分析都将根部置于分支1(包括双鞭毛虫属、吻滴虫属、几种波豆属物种以及可能的吻波豆属)与所有其他动质体之间。hsp90蛋白和第二密码子位置核苷酸的最大似然法和最大似然距离分析将锥虫科置于与盐沼波豆和疑似钩状波豆(分支3)相邻的位置,SSUrRNA分析(支持力度较弱)也得出了类似结果。hsp90第一密码子加第二密码子位置核苷酸分析得出了略有不同的拓扑结构。我们表明,这可能部分是由第一和第二密码子位置不同的进化行为导致的人为现象。这项研究提供了迄今为止最有力的证据,证明锥虫科起源于波豆科内部,且盐沼波豆是锥虫科的近亲。需要对动质体内部的高级分类学进行全面重新评估。我们确认在锥虫科中看到的动质体DNA的连锁网络组织是动质体中的一种衍生状态,但表明开放构象的微小环可能在动质体进化早期就已出现。来自基部(即分支1)波豆科的数据匮乏,阻碍了对动质体结构和RNA编辑进化的进一步理解。