Suppr超能文献

生物除磷活性污泥系统中聚磷菌(PAOs)的缺氧生长

Anoxic growth of phosphate-accumulating organisms (PAOs) in biological nutrient removal activated sludge systems.

作者信息

Hu Zhi-Rong, Wentzel M C, Ekama G A

机构信息

Department of Civil Engineering, Water Research Group, University of Cape Town, South Africa.

出版信息

Water Res. 2002 Nov;36(19):4927-37. doi: 10.1016/s0043-1354(02)00186-0.

Abstract

In this paper, research on the growth performance of phosphate-accumulating organisms (PAOs) was conducted based on literature and experimental investigations on biological nutrient removal (BNR) activated sludge (BNRAS) systems. The research aims at presenting the occurrence of denitrifying PAOs (DPAOs), abstracting information on the kinetics and stoichiometry of PAOs under anoxic conditions and determining the conditions that stimulate the PAO growth under anoxic conditions. The research results indicate that the PAOs are capable of utilizing nitrate as electron acceptor instead of oxygen in BNRAS systems, particularly in external nitrification BNRAS (ENBNRAS) systems. However, the growth yield of PAOs under anoxic conditions should be reduced to about 70% of that under aerobic conditions, and further the stoichiometric coefficient for anoxic P uptake per PHB COD utilized should be reduced to about 80% of that under aerobic conditions as the DPAOs show a significantly lower BEPR performance and use the influent RBCOD less "efficiently" compared with aerobic PAOs (APAOs). The research results also indicate that the major factor influencing the occurrence of DPAOs and associated anoxic P uptake is the nitrate load into the anoxic reactor, i.e. the nitrate load should be large enough or exceeds the denitrification potential of ordinary heterotrophic organisms (OHOs), i.e. non-PAO organisms in the anoxic reactor to stimulate DPAOs in the system as the specific denitrification rate of OHOs (K'2 OHO) is significantly larger than that of PAOs (K'2 PAO). In terms of this competition, if the nitrate load into the main anoxic reactor is less than the denitrification potential of OHOs, then the OHOs will outcompete PAOs for using the limited nitrate, while if the nitrate load in the main anoxic reactor exceeds the denitrification potential of OHOs, then the PAOs would have opportunities to use the "excess" nitrate and so develop in the system. The other factors that influence DPAOs include the system aerobic mass fraction, sequence of reactors and frequency of sludge alternation between the aerobic and anoxic states. Although it does appear that these factors above may significantly influence the fraction of DPAOs (etaG), the quantitative relationship between these factors and etaG is not known, and the experimental observations indicate that this will be system-specific, and require calibration for each situation.

摘要

本文基于对生物除磷(BNR)活性污泥(BNRAS)系统的文献和实验研究,对聚磷菌(PAO)的生长性能进行了研究。该研究旨在呈现反硝化聚磷菌(DPAO)的存在情况,提取缺氧条件下PAO的动力学和化学计量学信息,并确定刺激PAO在缺氧条件下生长的条件。研究结果表明,在BNRAS系统中,特别是在外源硝化BNRAS(ENBNRAS)系统中,PAO能够利用硝酸盐作为电子受体而非氧气。然而,缺氧条件下PAO的生长产率应降至有氧条件下的约70%,此外,与好氧聚磷菌(APAO)相比,由于DPAO的生物除磷反硝化性能显著较低且对进水易生物降解化学需氧量(RBCOD)的利用“效率”较低,因此每利用单位聚羟基丁酸酯(PHB)化学需氧量的缺氧吸磷化学计量系数应降至有氧条件下的约80%。研究结果还表明,影响DPAO出现及相关缺氧吸磷的主要因素是进入缺氧反应器的硝酸盐负荷,即硝酸盐负荷应足够大或超过普通异养菌(OHO)的反硝化潜力,即缺氧反应器中的非PAO生物,以刺激系统中的DPAO,因为OHO的比反硝化速率(K'2 OHO)显著大于PAO的比反硝化速率(K'2 PAO)。就这种竞争而言,如果进入主缺氧反应器的硝酸盐负荷小于OHO的反硝化潜力,那么OHO将在利用有限硝酸盐方面胜过PAO,而如果主缺氧反应器中的硝酸盐负荷超过OHO的反硝化潜力,那么PAO将有机会利用“过量”硝酸盐并在系统中生长。影响DPAO的其他因素包括系统好氧质量分数(系统好氧占比)、反应器顺序以及污泥在好氧和缺氧状态之间的交替频率。尽管上述这些因素似乎可能显著影响DPAO的占比(etaG),但这些因素与etaG之间的定量关系尚不清楚,且实验观察表明这将因系统而异,需要针对每种情况进行校准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验