Suppr超能文献

糖尿病患者群体中游离丙泊酚浓度的预测。

Prediction of unbound propofol concentrations in a diabetic population.

作者信息

de la Fuente Leire, Lukas John C, Jauregizar Nerea, Vázquez Jose Antonio, Calvo Rosario, Suárez Elena

机构信息

Department of Pharmacology, School of Medicine, University of the Basque Country, Leioa, Vizcaya, Spain.

出版信息

Ther Drug Monit. 2002 Dec;24(6):689-95. doi: 10.1097/00007691-200212000-00002.

Abstract

Propofol is a short-acting general intravenous anesthetic characterized by a wide interindividual variability in the response after the same dose. Its binding to serum proteins exceeds 98%, so small changes in protein concentrations can be amplified in the unbound fraction of the drug and hence possibly in the effect. It is then likely that part of the variability in the response could be attributed to differences in protein levels among individuals and particularly among those with pathologies such as diabetes. The aim of this study was to establish predictive regression models in a diabetes mellitus (DM) population between unbound:bound propofol ratios and demographic and biochemical indices. Unbound:bound propofol ratios can be routinely obtained in the clinic as opposed to the free fraction of the drug. In DM patients (30 women and 37 men aged between 17 and 78 y) with mellitus type 1 (n = 37) and type 2 (n = 30) diabetes, the authors measured the lipoproteins (HDL, LDL, and VLDL), cholesterol, triglycerides, albumin, alpha1-acid glycoprotein (AAG), free fatty acids (FFA), glycosylated hemoglobin, and the unbound fraction (Fu) and the bound/free ratio (B/F) of propofol. A linearized regression model between the above variables--as well as age, sex, and type of diabetes--and Fu was then developed. Patients had blood drawn and sera separated by centrifugation and spiked with propofol to a concentration of 10 microg/mL. The Fu was determined via ultrafiltration. Multiple linear regression analysis was used to identify significant predictor variables of Fu in this population and two models were originated: one with lipoprotein serum concentrations as explanatory variables (Model A) and another that depended on cholesterol and triglycerides (Model B). Both models presented high correlation coefficients (r2 = 0.71 and 0.68, respectively; P < 0.0001), and each was used to predict Fu in an independent group of 15 DM patients of similar characteristics and biochemical indices as the model development group. Bias and precision were for Model A, 0.9% and 7.8%, and for Model B, 3.0% and 8.7%, respectively. Both models were compared with each other and to a naive predictor (the mean) and each was better than the naive model in predicting the unbound fraction of propofol. Model A and model B could be used in estimating Fu of propofol in DM patients based on the more routine clinical measures of lipoprotein serum concentrations or cholesterol and triglyceride levels.

摘要

丙泊酚是一种短效全身静脉麻醉剂,其特点是相同剂量给药后个体反应存在广泛差异。它与血清蛋白的结合率超过98%,因此蛋白质浓度的微小变化可在药物的游离部分放大,进而可能影响药物效果。那么,部分反应差异可能归因于个体间蛋白质水平的差异,尤其是患有糖尿病等疾病的个体。本研究的目的是在糖尿病(DM)人群中建立未结合型:结合型丙泊酚比率与人口统计学和生化指标之间的预测回归模型。与药物的游离部分不同,未结合型:结合型丙泊酚比率可在临床上常规获得。在1型糖尿病(n = 37)和2型糖尿病(n = 30)患者(30名女性和37名男性,年龄在17至78岁之间)中,作者测量了脂蛋白(高密度脂蛋白、低密度脂蛋白和极低密度脂蛋白)、胆固醇、甘油三酯、白蛋白、α1-酸性糖蛋白(AAG)、游离脂肪酸(FFA)、糖化血红蛋白以及丙泊酚的未结合部分(Fu)和结合/游离比率(B/F)。然后建立了上述变量以及年龄、性别和糖尿病类型与Fu之间的线性回归模型。患者采血后通过离心分离血清,并加入丙泊酚使其浓度达到10μg/mL。通过超滤法测定Fu。采用多元线性回归分析确定该人群中Fu的显著预测变量,并建立了两个模型:一个以脂蛋白血清浓度作为解释变量(模型A),另一个依赖于胆固醇和甘油三酯(模型B)。两个模型均呈现出较高的相关系数(分别为r2 = 0.71和0.68;P < 0.0001),并分别用于预测15名具有与模型开发组相似特征和生化指标的DM患者独立组中的Fu。模型A的偏差和精密度分别为0.9%和7.8%,模型B的偏差和精密度分别为3.0%和8.7%。将两个模型相互比较,并与一个简单预测模型(均值)进行比较,在预测丙泊酚的未结合部分方面,两个模型均优于简单模型。基于脂蛋白血清浓度或胆固醇和甘油三酯水平等更常规的临床测量指标,模型A和模型B可用于估计DM患者丙泊酚的Fu。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验