Suppr超能文献

内含子剪接如何影响黑腹果蝇中的缺失和插入图谱。

How intron splicing affects the deletion and insertion profile in Drosophila melanogaster.

作者信息

Ptak Susan E, Petrov Dmitri A

机构信息

Department of Biological Sciences, Stanford University, California 94305, USA.

出版信息

Genetics. 2002 Nov;162(3):1233-44. doi: 10.1093/genetics/162.3.1233.

Abstract

Studies of "dead-on-arrival" transposable elements in Drosophila melanogaster found that deletions outnumber insertions approximately 8:1 with a median size for deletions of approximately 10 bp. These results are consistent with the deletion and insertion profiles found in most other Drosophila pseudogenes. In contrast, a recent study of D. melanogaster introns found a deletion/insertion ratio of 1.35:1, with 84% of deletions being shorter than 10 bp. This discrepancy could be explained if deletions, especially long deletions, are more frequently strongly deleterious than insertions and are eliminated disproportionately from intron sequences. To test this possibility, we use analysis and simulations to examine how deletions and insertions of different lengths affect different components of splicing and determine the distribution of deletions and insertions that preserve the original exons. We find that, consistent with our predictions, longer deletions affect splicing at a much higher rate compared to insertions and short deletions. We also explore other potential constraints in introns and show that most of these also disproportionately affect large deletions. Altogether we demonstrate that constraints in introns may explain much of the difference in the pattern of deletions and insertions observed in Drosophila introns and pseudogenes.

摘要

对黑腹果蝇中“到达即死亡”的转座元件的研究发现,缺失的数量比插入多,比例约为8:1,缺失的中位数大小约为10个碱基对。这些结果与在大多数其他果蝇假基因中发现的缺失和插入图谱一致。相比之下,最近一项对黑腹果蝇内含子的研究发现,缺失/插入比例为1.35:1,84%的缺失短于10个碱基对。如果缺失,尤其是长缺失,比插入更频繁地具有强烈的有害性,并从内含子序列中不成比例地被消除,那么这种差异就可以得到解释。为了检验这种可能性,我们使用分析和模拟来研究不同长度的缺失和插入如何影响剪接的不同组成部分,并确定保留原始外显子的缺失和插入的分布。我们发现,与我们的预测一致,与插入和短缺失相比,长缺失对剪接的影响频率要高得多。我们还探索了内含子中的其他潜在限制,并表明其中大多数也不成比例地影响大的缺失。我们总体证明,内含子中的限制可能解释了在果蝇内含子和假基因中观察到的缺失和插入模式差异的大部分原因。

相似文献

1
How intron splicing affects the deletion and insertion profile in Drosophila melanogaster.
Genetics. 2002 Nov;162(3):1233-44. doi: 10.1093/genetics/162.3.1233.
2
Selective constraints on intron evolution in Drosophila.
Genetics. 2003 Dec;165(4):1843-51. doi: 10.1093/genetics/165.4.1843.
3
6
AU-rich intronic elements affect pre-mRNA 5' splice site selection in Drosophila melanogaster.
Mol Cell Biol. 1993 Dec;13(12):7689-97. doi: 10.1128/mcb.13.12.7689-7697.1993.
9
Intron loss and gain in Drosophila.
Mol Biol Evol. 2007 Dec;24(12):2842-50. doi: 10.1093/molbev/msm235. Epub 2007 Oct 27.
10
High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups.
Mol Biol Evol. 1998 Mar;15(3):293-302. doi: 10.1093/oxfordjournals.molbev.a025926.

引用本文的文献

2
Intron and gene size expansion during nervous system evolution.
BMC Genomics. 2020 May 14;21(1):360. doi: 10.1186/s12864-020-6760-4.
3
New Methods for Inferring the Distribution of Fitness Effects for INDELs and SNPs.
Mol Biol Evol. 2018 Jun 1;35(6):1536-1546. doi: 10.1093/molbev/msy054.
4
Rapid Generation of Human Genetic Loss-of-Function iPSC Lines by Simultaneous Reprogramming and Gene Editing.
Stem Cell Reports. 2017 Sep 12;9(3):725-731. doi: 10.1016/j.stemcr.2017.07.003. Epub 2017 Aug 3.
5
Stabilizing selection, purifying selection, and mutational bias in finite populations.
Genetics. 2013 Aug;194(4):955-71. doi: 10.1534/genetics.113.151555. Epub 2013 May 24.
6
On the utility of short intron sequences as a reference for the detection of positive and negative selection in Drosophila.
Mol Biol Evol. 2010 Jun;27(6):1226-34. doi: 10.1093/molbev/msq046. Epub 2010 Feb 11.
7
Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison.
Genome Res. 2006 Jul;16(7):875-84. doi: 10.1101/gr.5022906. Epub 2006 Jun 2.
8
9
The regulatory content of intergenic DNA shapes genome architecture.
Genome Biol. 2004;5(4):R25. doi: 10.1186/gb-2004-5-4-r25. Epub 2004 Mar 15.
10
Benchmarking tools for the alignment of functional noncoding DNA.
BMC Bioinformatics. 2004 Jan 21;5:6. doi: 10.1186/1471-2105-5-6.

本文引用的文献

1
Mutational equilibrium model of genome size evolution.
Theor Popul Biol. 2002 Jun;61(4):531-44. doi: 10.1006/tpbi.2002.1605.
2
Non-coding RNAs: the architects of eukaryotic complexity.
EMBO Rep. 2001 Nov;2(11):986-91. doi: 10.1093/embo-reports/kve230.
4
Controlling the efficiency of excision repair.
Mutat Res. 2001 Feb 25;485(1):3-13. doi: 10.1016/s0921-8777(00)00071-9.
5
Genomic gigantism: DNA loss is slow in mountain grasshoppers.
Mol Biol Evol. 2001 Feb;18(2):246-53. doi: 10.1093/oxfordjournals.molbev.a003798.
7
Evidence for splice site pairing via intron definition in Schizosaccharomyces pombe.
Mol Cell Biol. 2000 Nov;20(21):7955-70. doi: 10.1128/MCB.20.21.7955-7970.2000.
8
DNA repair in Drosophila: insights from the Drosophila genome sequence.
J Cell Biol. 2000 Jul 24;150(2):F31-6. doi: 10.1083/jcb.150.2.f31.
9
Pseudogene evolution and natural selection for a compact genome.
J Hered. 2000 May-Jun;91(3):221-7. doi: 10.1093/jhered/91.3.221.
10
The evolution of an alpha-esterase pseudogene inactivated in the Drosophila melanogaster lineage.
Mol Biol Evol. 2000 Apr;17(4):563-75. doi: 10.1093/oxfordjournals.molbev.a026336.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验