Armbruster D A, Rudolph F B
J Biol Chem. 1976 Jan 25;251(2):320-3.
The effect of inert coordination complexes of chromium (III) with various nucleotides on the catalytic activity of rat liver pyruvate carboxylase was determined. The chromium nucleotides are effective initial inhibitors of pyruvate carboxylase and the inhibition becomes more severe with time. The initial rate decreases for several minutes, reaching a new slower rate that is then maintained until considerable net reaction occurs. Incubation of the enzyme with chromium nucleotides in the presence of Mg2+ and HCO3- causes maximal inhibition of the reaction and linear initial rates are then observed. This effect is similar to that found with yeast hexokinase (Dannenberg, K.D., and Cleland, W.W. (1975) Biochemistry 14, 28-39). The specificity of the carboxylase toward the nucleotide complexes suggests that the alpha and beta nucleotide phosphates are as important as the gamma phosphate in binding to the enzyme. A stable pyruvate carboxylase chromium nucleotide complex was not observed. These results are quite different from those found with yeast hexokinase where a stable complex between CrATP, sugar, and enzyme is found and hexokinase appears to be specific toward the beta, gamma phosphates of its nucleotide substrates.