Suppr超能文献

通过纳米颗粒自组装制备的交换耦合纳米复合磁体。

Exchange-coupled nanocomposite magnets by nanoparticle self-assembly.

作者信息

Zeng Hao, Li Jing, Liu J P, Wang Zhong L, Sun Shouheng

机构信息

IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA.

出版信息

Nature. 2002 Nov 28;420(6914):395-8. doi: 10.1038/nature01208.

Abstract

Exchange-spring magnets are nanocomposites that are composed of magnetically hard and soft phases that interact by magnetic exchange coupling. Such systems are promising for advanced permanent magnetic applications, as they have a large energy product--the combination of permanent magnet field and magnetization--compared to traditional, single-phase materials. Conventional techniques, including melt-spinning, mechanical milling and sputtering, have been explored to prepare exchange-spring magnets. However, the requirement that both the hard and soft phases are controlled at the nanometre scale, to ensure efficient exchange coupling, has posed significant preparation challenges. Here we report the fabrication of exchange-coupled nanocomposites using nanoparticle self-assembly. In this approach, both FePt and Fe3O4 particles are incorporated as nanometre-scale building blocks into binary assemblies. Subsequent annealing converts the assembly into FePt-Fe3Pt nanocomposites, where FePt is a magnetically hard phase and Fe3Pt a soft phase. An optimum exchange coupling, and therefore an optimum energy product, can be obtained by independently tuning the size and composition of the individual building blocks. We have produced exchange-coupled isotropic FePt-Fe3Pt nanocomposites with an energy product of 20.1 MG Oe, which exceeds the theoretical limit of 13 MG Oe for non-exchange-coupled isotropic FePt by over 50 per cent.

摘要

交换弹簧磁体是由硬磁相和软磁相组成的纳米复合材料,它们通过磁交换耦合相互作用。这类系统在先进永磁应用方面颇具前景,因为与传统单相材料相比,它们具有很大的能量积——永磁体场和磁化强度的组合。人们已经探索了包括熔体纺丝、机械研磨和溅射在内的传统技术来制备交换弹簧磁体。然而,要将硬磁相和软磁相都控制在纳米尺度以确保有效的交换耦合,这带来了重大的制备挑战。在此,我们报道了利用纳米颗粒自组装制备交换耦合纳米复合材料的方法。在这种方法中,FePt和Fe3O4颗粒作为纳米级构建块被纳入二元组装体中。随后的退火处理将组装体转变为FePt - Fe3Pt纳米复合材料,其中FePt是硬磁相,Fe3Pt是软磁相。通过独立调节各个构建块的尺寸和组成,可以获得最佳的交换耦合,进而得到最佳的能量积。我们制备出了能量积为20.1 MG Oe的交换耦合各向同性FePt - Fe3Pt纳米复合材料,这比非交换耦合各向同性FePt的理论极限13 MG Oe高出了50%以上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验