Thoby-Brisson Muriel, Simmers John
Laboratoire de Neurobiologie des Réseaux, Université Bordeaux 1 and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5816, 33405 Talence, France.
J Neurophysiol. 2002 Dec;88(6):2942-53. doi: 10.1152/jn.00482.2001.
Rhythm generation by the pyloric motor network in the stomatogastric ganglion (STG) of the spiny lobster requires permissive neuromodulatory inputs from other central ganglia. When these inputs to the STG are suppressed by cutting the single, mainly afferent stomatogastric nerve (stn), pyloric neurons cease to burst and the network falls silent. However, as shown previously, if such a decentralized quiescent ganglion is maintained in organ culture, pyloric network rhythmicity returns after 3-4 days and, although slower, is similar to the motor pattern expressed when the stn is intact. Here we use current- and voltage-clamp, primarily of identified pyloric dilator (PD) neurons, to investigate changes in synaptic and cellular properties that underlie this transition in network behavior. Although the efficacy of chemical synapses between pyloric neurons decreases significantly (by <or=50%) after STG decentralization, the fundamental change leading to rhythm recovery occurs in the voltage-dependent properties of the neurons themselves. Whereas pyloric neurons, including the PD, lateral pyloric, and pyloric cell types, are unable to generate burst-producing membrane potential oscillations in the short-term absence of extrinsic modulatory inputs, in long-term decentralized ganglia, the same cells are able to oscillate spontaneously, even after experimental isolation in situ from all other elements in the pyloric network. In PD neurons this reacquisition of rhythmicity is associated with a net reduction in outward tetraethylammonium-sensitive ionic currents that include a delayed-rectifier type potassium current (I(Kd)) and a calcium-dependent K(+) current, I(KCa). By contrast, long-term STG decentralization caused enhancement of a hyperpolarization-activated inward current that resembles I(h). These results are consistent with the hypothesis that modulatory inputs sustain the modulation-dependent rhythmogenic character of the pyloric network by continuously regulating the balance of membrane conductances that underlie neuronal oscillation.
多刺龙虾口胃神经节(STG)中的幽门运动网络产生节律需要来自其他中枢神经节的允许性神经调节输入。当通过切断单一的、主要为传入性的口胃神经(stn)来抑制对STG的这些输入时,幽门神经元停止爆发,网络陷入沉默。然而,如先前所示,如果将这种去中枢化的静止神经节维持在器官培养中,幽门网络节律在3 - 4天后恢复,并且尽管较慢,但与stn完整时所表达的运动模式相似。在这里,我们主要对已识别的幽门扩张肌(PD)神经元进行电流钳和电压钳实验,以研究突触和细胞特性的变化,这些变化是网络行为这种转变的基础。尽管STG去中枢化后幽门神经元之间化学突触的效能显著降低(降低幅度≤50%),但导致节律恢复的根本变化发生在神经元自身的电压依赖性特性中。在短期缺乏外在调节输入的情况下,包括PD、外侧幽门和幽门细胞类型在内的幽门神经元无法产生引发爆发的膜电位振荡,但在长期去中枢化的神经节中,即使在实验中从幽门网络中的所有其他元件原位分离后,相同的细胞也能够自发振荡。在PD神经元中,这种节律性的重新获得与外向四乙铵敏感离子电流的净减少有关,这些电流包括延迟整流型钾电流(I(Kd))和钙依赖性钾电流I(KCa)。相比之下,长期的STG去中枢化导致一种类似于I(h)的超极化激活内向电流增强。这些结果与以下假设一致,即调节性输入通过持续调节构成神经元振荡基础的膜电导平衡,维持幽门网络依赖调节的节律生成特性。