Faumont Serge, Combes Denis, Meyrand Pierre, Simmers John
Laboratoire de Neurobiologie des Réseaux, Université Bordeaux 1 & Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5816, Avenue des Facultés, 33405 Talence, France.
Eur J Neurosci. 2005 Nov;22(10):2489-502. doi: 10.1111/j.1460-9568.2005.04442.x.
The pyloric and gastric motor pattern-generating networks in the stomatogastric ganglion of the lobster Homarus gammarus are reconfigured into a new functional circuit by burst discharge in an identified pair of modulatory projection interneurons, originally named the pyloric suppressor (PS) neurons because of their inhibitory effects on pyloric network activity. Here we elucidate the actions of the PS neurons on individual members of the neighbouring gastric circuit, as well as describing their ability to alter synaptic coupling between the two networks. PS neuron firing has two distinct effects on gastric network activity: an initial short-lasting action mediated by transient inhibition of most gastric motoneurons, followed by a long-lasting circuit activation associated with a prolonged PS-evoked depolarization of the medial gastric (MG) motoneuron and the single network interneuron, Int1. These long-lasting effects are voltage-dependent, and experiments with hyperpolarizing current injection and photoablation suggest that excitation of both the MG neuron and Int1 is critical for PS-elicited gastric network rhythmicity. In parallel, PS neuron discharge persistently (lasting several minutes) enhances the strength of an inhibitory synaptic influence of the MG neuron on the pyloric dilator (PD)-anterior burster (AB) pacemaker neurons, thereby facilitating operational fusion of the two networks. Therefore, a single modulatory neuron may influence disparate populations of neurons via a range of very different and highly target-specific mechanisms: conventional transient synaptic drive and up- or down-modulation of membrane properties and synaptic efficacy. Moreover, distinctly different time courses of these actions allow different circuit configurations to be specified sequentially by a given modulatory input.
龙虾美洲螯龙虾口胃神经节中的幽门和胃运动模式生成网络,通过一对已识别的调制性投射中间神经元的爆发式放电,重新配置成一个新的功能回路。这对中间神经元最初被称为幽门抑制(PS)神经元,因为它们对幽门网络活动有抑制作用。在这里,我们阐明了PS神经元对相邻胃回路中单个成员的作用,并描述了它们改变两个网络之间突触耦合的能力。PS神经元放电对胃网络活动有两种不同的影响:一种是由大多数胃运动神经元的短暂抑制介导的初始短期作用,随后是与PS诱发的内侧胃(MG)运动神经元和单个网络中间神经元Int1的延长去极化相关的长期回路激活。这些长期影响是电压依赖性的,超极化电流注入和光消融实验表明,MG神经元和Int1的兴奋对于PS引发的胃网络节律至关重要。同时,PS神经元放电持续(持续几分钟)增强了MG神经元对幽门扩张(PD)-前爆发(AB)起搏神经元的抑制性突触影响的强度,从而促进了两个网络的操作融合。因此,单个调制神经元可能通过一系列非常不同且高度靶向特异性的机制影响不同的神经元群体:传统的短暂突触驱动以及膜特性和突触效能的上调或下调。此外,这些作用明显不同的时间进程允许由给定的调制输入依次指定不同的回路配置。