Suppr超能文献

非洲爪蟾蝌蚪嗅觉神经元的气味反应:不同制备方法之间的比较。

Odorant responses of Xenopus laevis tadpole olfactory neurons: a comparison between preparations.

作者信息

Manzini Ivan, Peters Florian, Schild Detlev

机构信息

Physiologisches Institut, Universität Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.

出版信息

J Neurosci Methods. 2002 Dec 15;121(2):159-67. doi: 10.1016/s0165-0270(02)00248-0.

Abstract

We used a slice preparation of the olfactory epithelium of Xenopus laevis tadpoles to record odorant responses of olfactory receptor neurons (ORNs) and compared these to odorant responses recorded in isolated ORNs. The maximum recording time in the slice was considerably longer than in isolated ORNs, which is essential when many odorants are to be tested. No odorant-induced responses could be obtained from isolated ORNs recorded in the on-cell mode, while recordings in the slice (on-cell and whole-cell) as well as previously reported perforated-patch recordings in isolated ORNs of the same species () were successful, though qualitatively different. In the slice preparation, amino acids as well as an extract from Spirulina algae always induced excitatory responses, while, in a previous study on isolated ORNs, responses were either excitatory or inhibitory. The results of this study show that ORNs obtained using different preparation techniques can give markedly different responses upon the application of odorants. Our experiments indicate that the slice preparation combined with the on-cell configuration of the patch-clamp technique is the method of choice for testing many odorants on individual ORNs.

摘要

我们使用非洲爪蟾蝌蚪嗅上皮的切片标本记录嗅觉受体神经元(ORN)的气味反应,并将其与分离的ORN中记录的气味反应进行比较。切片中的最大记录时间比分离的ORN长得多,这在测试多种气味剂时至关重要。在细胞贴附模式下记录的分离ORN无法获得气味剂诱导的反应,而切片中的记录(细胞贴附模式和全细胞模式)以及先前报道的同一物种分离ORN中的穿孔膜片钳记录均成功,尽管在性质上有所不同。在切片标本中,氨基酸以及螺旋藻提取物总是诱导兴奋性反应,而在先前对分离ORN的研究中,反应要么是兴奋性的,要么是抑制性的。本研究结果表明,使用不同制备技术获得的ORN在施加气味剂时可产生明显不同的反应。我们的实验表明,结合膜片钳技术的细胞贴附模式的切片标本制备方法是在单个ORN上测试多种气味剂的首选方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验