Suppr超能文献

Interleukin-1beta in the functional and structural luteolysis. Relationship with the nitric oxide system.

作者信息

Estevez A, Tognetti T, Rearte B, Sander V, Motta A B

机构信息

Centro de Estudios Farmacológicos y Botánicos--Consejo de Investigaciones Científicas y Técnicas, Serrano, Buenos Aires, Argentina.

出版信息

Prostaglandins Leukot Essent Fatty Acids. 2002 Dec;67(6):411-7. doi: 10.1054/plef.2002.0451.

Abstract

The aim of the present report was to investigate the in vitro effect of interleukin-1beta(IL-1beta) on corpus luteum (CL) function and some aspects of this mechanism involved. Ovarian rat dispersates from mid-luteal phase were exposed to different doses of IL-1beta (1, 10, 20 ng/ml). Meanwhile 1, 10 and 20 ng/ml of IL-1beta decreased progesterone (P4) production, only the highest doses of IL-1beta increased prostaglandin F2alpha (PGF2alpha) levels. To investigate the possible relationship between PGs production and P4 synthesis, we incubated together IL-1beta (20 ng/ml) and indomethacin (0.1 mM) a potent inhibitor of cyclooxygenase pathway. We found that P4 inhibition induced by IL-1beta was completely prevented by addition of indomethacin. On the other hand, when ovarian rat tissue were exposed at 20 ng/ml of IL-1beta (doses that affected both PGF2alpha and P4 production) the nitric oxide synthase (NOS) activity was augmented. Moreover, IL-1beta effects on PGF2alpha and P4 levels were impaired when a NOS inhibitor N(W)-nitro- L -arginine methyl ester (L-NAME, 600 microM) was added to the incubation media. These data demonstrate that: (i) at the tested doses (1-20 ng/ml), IL-1beta is involved in CL function through the diminution of P4 production of whole ovarian dispersate culture; (ii) at the highest doses assayed (20 ng/ml) IL-1beta increased PGF2alpha production; (iii) at these doses, IL-1beta decreased P4 production by means of a cyclooxygenase pathway and (iv) the NO system would be a key intermediary second messenger in the IL-1beta actions.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验