San Filippo Joseph, Lambowitz Alan M
Department of Chemistry and Biochemistry, and Section of Molecular, Genetics and Microbiology, School of Biological Sciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, MBB2. 234BA, 2500 Speedway, Austin, TX 78712, USA.
J Mol Biol. 2002 Dec 13;324(5):933-51. doi: 10.1016/s0022-2836(02)01147-6.
Group II intron retrohoming occurs by a mechanism in which the intron RNA reverse splices directly into one strand of a double-stranded DNA target site, while the intron-encoded reverse transcriptase uses a C-terminal DNA endonuclease activity to cleave the opposite strand and then uses the cleaved 3' end as a primer for reverse transcription of the inserted intron RNA. Here, we characterized the C-terminal DNA-binding/DNA endonuclease region of the LtrA protein encoded by the Lactococcus lactis Ll.LtrB intron. This C-terminal region consists of an upstream segment that contributes to DNA binding, followed by a DNA endonuclease domain that contains conserved sequence motifs characteristic of H-N-H DNA endonucleases, interspersed with two pairs of conserved cysteine residues. Atomic emission spectroscopy of wild-type and mutant LtrA proteins showed that the DNA endonuclease domain contains a single tightly bound Mg(2+) ion at the H-N-H active site. Although the conserved cysteine residue pairs could potentially bind Zn(2+), the purified LtrA protein is active despite the presence of only sub-stoichiometric amounts of Zn(2+), and the addition of exogenous Zn(2+) inhibits the DNA endonuclease activity. Multiple sequence alignments identified features of the DNA-binding region and DNA endonuclease domain that are conserved in LtrA and related group II intron proteins, and their functional importance was demonstrated by unigenic evolution analysis and biochemical assays of mutant LtrA protein with alterations in key amino acid residues. Notably, deletion of the DNA endonuclease domain or mutations in its conserved sequence motifs strongly inhibit reverse transcriptase activity, as well as bottom-strand cleavage, while retaining other activities of the LtrA protein. A UV-cross-linking assay showed that these DNA endonuclease domain mutations do not block DNA primer binding and thus likely inhibit reverse transcriptase activity either by affecting the positioning of the primer or the conformation of the reverse transcriptase domain.
II类内含子归巢是通过一种机制发生的,即内含子RNA直接反向剪接到双链DNA靶位点的一条链中,而内含子编码的逆转录酶利用C端DNA内切核酸酶活性切割互补链,然后将切割后的3'端用作插入的内含子RNA逆转录的引物。在此,我们对乳酸乳球菌Ll.LtrB内含子编码的LtrA蛋白的C端DNA结合/DNA内切核酸酶区域进行了表征。该C端区域由一个有助于DNA结合的上游片段组成,随后是一个DNA内切核酸酶结构域,该结构域包含H-N-H DNA内切核酸酶特有的保守序列基序,并散布着两对保守的半胱氨酸残基。野生型和突变型LtrA蛋白的原子发射光谱表明,DNA内切核酸酶结构域在H-N-H活性位点含有单个紧密结合的Mg(2+)离子。尽管保守的半胱氨酸残基对可能结合Zn(2+),但纯化的LtrA蛋白尽管仅存在亚化学计量的Zn(2+)仍具有活性,并且添加外源Zn(2+)会抑制DNA内切核酸酶活性。多序列比对确定了LtrA和相关II类内含子蛋白中保守的DNA结合区域和DNA内切核酸酶结构域的特征,并且通过单基因进化分析和关键氨基酸残基发生改变的突变型LtrA蛋白的生化分析证明了它们的功能重要性。值得注意的是,DNA内切核酸酶结构域的缺失或其保守序列基序中的突变强烈抑制逆转录酶活性以及底部链切割,同时保留LtrA蛋白的其他活性。紫外线交联试验表明,这些DNA内切核酸酶结构域突变不会阻止DNA引物结合,因此可能通过影响引物的定位或逆转录酶结构域的构象来抑制逆转录酶活性。