Kappen L S, Goldberg I H
Biochemistry. 1976 Feb 24;15(4):811-8. doi: 10.1021/bi00649a013.
Earlier work has shown that the inhibition by pactamycin (PM) of polypeptide chain initiation in reticulocyte extracts is associated with (1) a defect in the joining of the 60S subunit to the smaller initiation complex to form an 80S complex ("joining reaction") (Kappen, L. S., Suzuki, H., and Goldberg, I. H. (1973), Proc. Natl. Acad. Sci. U.S.A. 70, 22) and (2) a block after the synthesis of the initial dipeptide (Kappen, L. S., and Goldberg, I. H. (1973), Biochem. Biophys. Res. Commun. 54, 1083). The relative contributions of these two effects to the action of PM and their relationship to one another were evaluated in a system employing sparsomycin that permits both initiation at a certain number of initiation sites and limited oligopeptide formation without termination and release. The degree to which PM blocks the "joining reaction" and leads to the accumulation of 48S initiation complexes that either remain free or are bound to polysomes without the corresponding 60S subunit ("half-mers") was estimated by treatment of polysomes with RNase. Met-tRNAfMet binding factors are required to stabilize the RNase-generated 48S complexes. Under conditions where the initiation factor required for the "joining reaction" functions catalytically, presumably by cycling on and off initiation complexes, PM usually inhibits 80S complex formation 50-70%. Where "joining" is not limiting (presence of at least stoichiometric amounts of joining factor or high Mg2+ concentration) PM leads to the maximal accumulation of the initial dipeptide, Met-Val, in the P-site on the ribosome, indicating a block in a subsequent step in elongation. Binding studies with [3H]PM and the inability of PM to inhibit elongation of preformed Met-Val indicate that PM must interact with the ribosomes at an early stage of initiation. Taken together these data are compatible with the suggestion that PM does not interfere with the ribosomal "joining reaction" per se, but prevents the release and reuse of the joining factor, and in so doing blocks a step in elongation after formation of the initial dipeptide and its translocation to the P-site on the ribosome.
早期的研究表明,放线菌酮(PM)对网织红细胞提取物中多肽链起始的抑制作用与以下两点有关:(1)60S亚基与较小的起始复合物结合形成80S复合物(“结合反应”)存在缺陷(卡彭,L.S.,铃木,H.,和戈德堡,I.H.(1973年),《美国国家科学院院刊》70,22);(2)在合成初始二肽后出现阻断(卡彭,L.S.,和戈德堡,I.H.(1973年),《生物化学与生物物理研究通讯》54,1083)。在一个使用稀疏霉素的系统中评估了这两种效应对PM作用的相对贡献及其相互关系,该系统允许在一定数量的起始位点起始并进行有限的寡肽形成而不发生终止和释放。通过用核糖核酸酶处理多核糖体来估计PM阻断“结合反应”并导致48S起始复合物积累的程度,这些复合物要么保持游离状态,要么与没有相应60S亚基的多核糖体结合(“半聚体”)。甲硫氨酰 - tRNAfMet结合因子是稳定核糖核酸酶产生的48S复合物所必需的。在“结合反应”所需的起始因子起催化作用的条件下,大概是通过在起始复合物上循环作用,PM通常抑制80S复合物形成50 - 70%。在“结合”不限制的情况下(存在至少化学计量量的结合因子或高镁离子浓度),PM导致核糖体P位点上初始二肽甲硫氨酸 - 缬氨酸的最大积累,表明在延伸的后续步骤中存在阻断。用[3H]PM进行的结合研究以及PM不能抑制预先形成的甲硫氨酸 - 缬氨酸的延伸表明,PM必须在起始的早期阶段与核糖体相互作用。综合这些数据与以下观点一致,即PM本身并不干扰核糖体的“结合反应”,而是阻止结合因子的释放和再利用,并且这样做会在初始二肽形成并转移到核糖体P位点后阻断延伸步骤。