Suppr超能文献

反馈在塑造猫视觉皮层神经表征中的作用。

The role of feedback in shaping neural representations in cat visual cortex.

作者信息

Galuske Ralf A W, Schmidt Kerstin E, Goebel Rainer, Lomber Stephen G, Payne Bertram R

机构信息

Department of Neurophysiology, Max Planck Institute for Brain Research, 60528 Frankfurt am Main, Germany Europe.

出版信息

Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):17083-8. doi: 10.1073/pnas.242399199. Epub 2002 Dec 11.

Abstract

In the primary visual cortex, neurons with similar response preferences are grouped into domains forming continuous maps of stimulus orientation and direction of movement. These properties are widely believed to result from the combination of ascending and lateral interactions in the visual system. We have tested this view by examining the influence of deactivating feedback signals descending from the visuoparietal cortex on the emergence of these response properties and representations in cat area 18. We thermally deactivated the dominant motion-processing region of the visuoparietal cortex and used optical and electrophysiological methods to assay neural activity evoked in area 18 by stimulation with moving gratings and fields of coherently moving randomly distributed dots. Feedback deactivation decreased signal strength in both orientation and direction maps and virtually abolished the global layout of direction maps, whereas the basic structure of the orientation maps was preserved. These findings could be accounted for by a selective silencing of highly direction-selective neurons and by the redirection of preferences of less selective neurons. Our data suggest that signals fed back from the visuoparietal cortex strongly contribute to the emergence of direction selectivity in early visual areas. Thus we propose that higher cortical areas have significant influence over fundamental neuronal properties as they emerge in lower areas.

摘要

在初级视皮层中,具有相似反应偏好的神经元被分组形成刺激方向和运动方向的连续图谱。人们普遍认为,这些特性是视觉系统中上行和侧向相互作用共同作用的结果。我们通过研究从视顶叶皮层下行的失活反馈信号对猫18区这些反应特性和表征出现的影响,来检验这一观点。我们通过热失活视顶叶皮层的主要运动处理区域,并使用光学和电生理方法,来检测用移动光栅和相干移动的随机分布点场刺激18区时诱发的神经活动。反馈失活降低了方向图和方向图谱中的信号强度,几乎消除了方向图谱的全局布局,而方向图的基本结构得以保留。这些发现可以通过高度方向选择性神经元的选择性沉默以及选择性较低的神经元偏好的重新定向来解释。我们的数据表明,从视顶叶皮层反馈的信号对早期视觉区域方向选择性的出现有很大贡献。因此,我们提出,更高层次的皮层区域对较低层次区域中出现的基本神经元特性有重大影响。

相似文献

1
The role of feedback in shaping neural representations in cat visual cortex.
Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):17083-8. doi: 10.1073/pnas.242399199. Epub 2002 Dec 11.
2
Posteromedial lateral suprasylvian motion area modulates direction but not orientation preference in area 17 of cats.
Neuroscience. 2006 Oct 27;142(3):905-16. doi: 10.1016/j.neuroscience.2006.06.046. Epub 2006 Aug 4.
4
Organization of orientation and direction selectivity in areas 17 and 18 of cat cerebral cortex.
J Neurophysiol. 1987 Oct;58(4):676-99. doi: 10.1152/jn.1987.58.4.676.
5
Silencing "Top-Down" Cortical Signals Affects Spike-Responses of Neurons in Cat's "Intermediate" Visual Cortex.
Front Neural Circuits. 2017 Apr 25;11:27. doi: 10.3389/fncir.2017.00027. eCollection 2017.
6
Feedback from area 21a influences orientation but not direction maps in the primary visual cortex of the cat.
Neurosci Lett. 2011 Oct 24;504(2):141-145. doi: 10.1016/j.neulet.2011.09.019. Epub 2011 Sep 17.
7
Neural Processing of Second-Order Motion in the Suprasylvian Cortex of the Cat.
Cereb Cortex. 2017 Feb 1;27(2):1347-1357. doi: 10.1093/cercor/bhv320.
8
Anisotropy in the representation of direction preferences in cat area 18.
Eur J Neurosci. 2008 May;27(10):2773-80. doi: 10.1111/j.1460-9568.2008.06219.x. Epub 2008 May 16.
9
The mechanism for processing random-dot motion at various speeds in early visual cortices.
PLoS One. 2014 Mar 28;9(3):e93115. doi: 10.1371/journal.pone.0093115. eCollection 2014.
10
Columnar processing of border ownership in primate visual cortex.
Elife. 2021 Nov 30;10:e72573. doi: 10.7554/eLife.72573.

引用本文的文献

1
In the brain of the beholder: bi-stable motion reveals mesoscopic-scale feedback modulation in V1.
Brain Struct Funct. 2025 Apr 5;230(3):47. doi: 10.1007/s00429-025-02906-8.
2
Top-down modulation of visual cortical stimulus encoding and gamma independent of firing rates.
bioRxiv. 2024 Apr 12:2024.04.11.589006. doi: 10.1101/2024.04.11.589006.
3
Dynamic Recruitment of the Feedforward and Recurrent Mechanism for Black-White Asymmetry in the Primary Visual Cortex.
J Neurosci. 2023 Aug 2;43(31):5668-5684. doi: 10.1523/JNEUROSCI.0168-23.2023. Epub 2023 Jul 24.
4
Suppression of top-down influence decreases both behavioral and V1 neuronal response sensitivity to stimulus orientations in cats.
Front Behav Neurosci. 2023 Feb 8;17:1061980. doi: 10.3389/fnbeh.2023.1061980. eCollection 2023.
5
Revisiting horizontal connectivity rules in V1: from like-to-like towards like-to-all.
Brain Struct Funct. 2022 May;227(4):1279-1295. doi: 10.1007/s00429-022-02455-4. Epub 2022 Feb 5.
6
Effects of top-down influence suppression on behavioral and V1 neuronal contrast sensitivity functions in cats.
iScience. 2021 Dec 24;25(1):103683. doi: 10.1016/j.isci.2021.103683. eCollection 2022 Jan 21.
8
The role of feedback projections in feature tuning and neuronal excitability in the early primate visual system.
Brain Struct Funct. 2021 Dec;226(9):2881-2895. doi: 10.1007/s00429-021-02311-x. Epub 2021 Jun 4.
10
Visual Corticocortical Inputs to Ferret Area 18.
Front Neuroanat. 2020 Oct 6;14:581478. doi: 10.3389/fnana.2020.581478. eCollection 2020.

本文引用的文献

1
Receptive fields, binocular interaction and functional architecture in the cat's visual cortex.
J Physiol. 1962 Jan;160(1):106-54. doi: 10.1113/jphysiol.1962.sp006837.
2
Pairing-induced changes of orientation maps in cat visual cortex.
Neuron. 2001 Oct 25;32(2):325-37. doi: 10.1016/s0896-6273(01)00472-x.
3
Feedback connections act on the early part of the responses in monkey visual cortex.
J Neurophysiol. 2001 Jan;85(1):134-45. doi: 10.1152/jn.2001.85.1.134.
6
Striate cortex increases contrast gain of macaque LGN neurons.
Vis Neurosci. 2000 Jul-Aug;17(4):485-94. doi: 10.1017/s0952523800174012.
9
Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure.
J Neurophysiol. 1998 Dec;80(6):2991-3004. doi: 10.1152/jn.1998.80.6.2991.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验