Chantret Isabelle, Dancourt Julia, Dupré Thierry, Delenda Christophe, Bucher Stéphanie, Vuillaumier-Barrot Sandrine, Ogier de Baulny Hélène, Peletan Celine, Danos Olivier, Seta Nathalie, Durand Geneviève, Oriol Rafael, Codogno Patrice, Moore Stuart E H
Unité de Glycobiologie et Signalisation Cellulaire, INSERM, U504, Bâtiment INSERM, 16 Avenue Paul Vaillant-Couturier, 94807 Villejuif, France.
J Biol Chem. 2003 Mar 14;278(11):9962-71. doi: 10.1074/jbc.M211950200. Epub 2002 Dec 11.
The underlying causes of type I congenital disorders of glycosylation (CDG I) have been shown to be mutations in genes encoding proteins involved in the biosynthesis of the dolichyl-linked oligosaccharide (Glc(3)Man(9)GlcNAc(2)-PP-dolichyl) that is required for protein glycosylation. Here we describe a CDG I patient displaying gastrointestinal problems but no central nervous system deficits. Fibroblasts from this patient accumulate mainly Man(9)GlcNAc(2)-PP-dolichyl, but in the presence of castanospermine, an endoplasmic reticulum glucosidase inhibitor Glc(1)Man(9)GlcNAc(2)-PP-dolichyl predominates, suggesting inefficient addition of the second glucose residue onto lipid-linked oligosaccharide. Northern blot analysis revealed the cells from the patient to possess only 10-20% normal amounts of mRNA encoding the enzyme, dolichyl-P-glucose:Glc(1)Man(9)GlcNAc(2)-PP-dolichyl alpha3-glucosyltransferase (hALG8p), which catalyzes this reaction. Sequencing of hALG8 genomic DNA revealed exon 4 to contain a base deletion in one allele and a base insertion in the other. Both mutations give rise to premature stop codons predicted to generate severely truncated proteins, but because the translation inhibitor emetine was shown to stabilize the hALG8 mRNA from the patient to normal levels, it is likely that both transcripts undergo nonsense-mediated mRNA decay. As the cells from the patient were successfully complemented with wild type hALG8 cDNA, we conclude that these mutations are the underlying cause of this new CDG I subtype that we propose be called CDG Ih.
I型先天性糖基化障碍(CDG I)的潜在病因已被证明是编码参与多萜醇连接寡糖(Glc(3)Man(9)GlcNAc(2)-PP-多萜醇)生物合成的蛋白质的基因突变,而这种寡糖是蛋白质糖基化所必需的。在此,我们描述了一名患有胃肠道问题但无中枢神经系统缺陷的CDG I患者。该患者的成纤维细胞主要积累Man(9)GlcNAc(2)-PP-多萜醇,但在内质网葡萄糖苷酶抑制剂栗精胺存在的情况下,Glc(1)Man(9)GlcNAc(2)-PP-多萜醇占主导地位,这表明在脂质连接寡糖上第二个葡萄糖残基的添加效率低下。Northern印迹分析显示,该患者的细胞中编码催化此反应的多萜醇-P-葡萄糖:Glc(1)Man(9)GlcNAc(2)-PP-多萜醇α3-葡萄糖基转移酶(hALG8p)的mRNA量仅为正常量的10 - 20%。hALG8基因组DNA测序显示,一个等位基因的外显子4存在碱基缺失,另一个等位基因存在碱基插入。这两种突变均导致过早的终止密码子,预计会产生严重截短的蛋白质,但由于翻译抑制剂依米丁可将患者的hALG8 mRNA稳定至正常水平,因此这两种转录本可能都经历了无义介导的mRNA降解。由于该患者的细胞成功地用野生型hALG8 cDNA进行了互补,我们得出结论,这些突变是这种新的CDG I亚型的潜在病因,我们提议将其称为CDG Ih。