Suppr超能文献

多菌株病原体的动态变化与选择

Dynamics and selection of many-strain pathogens.

作者信息

Gog Julia R, Grenfell Bryan T

机构信息

Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):17209-14. doi: 10.1073/pnas.252512799. Epub 2002 Dec 12.

Abstract

Strain structure is of fundamental importance in the underlying dynamics of a number of pathogens. However, previous models have been too complex to accommodate many strains. This paper offers a solution to this problem, in the form of a simple model that is capable of capturing the dynamics of a large number of antigenic types that interact via host cross-immunity. We derive the structure of the model, which can manage the complexity of many strains by using a status-based formulation, assuming polarized immunity and cross-immunity act to reduced transmission probability. We then apply the model to address basic questions in strain dynamics, focusing particularly on the interpandemic dynamics of influenza. This model shows that strains have a tendency to "cluster." For a long infectious period, relative to host lifetime, clusters may coexist. By contrast, a short infectious period leads to a single dominant cluster at any given time. We show how the speed of cluster replacement depends on the specificity of cross-immunity and on the underlying pathogen mutation rate.

摘要

毒株结构在许多病原体的潜在动态中至关重要。然而,先前的模型过于复杂,无法容纳多种毒株。本文以一个简单模型的形式为这一问题提供了一个解决方案,该模型能够捕捉通过宿主交叉免疫相互作用的大量抗原类型的动态。我们推导了模型的结构,该模型通过基于状态的公式来管理多种毒株的复杂性,假设极化免疫和交叉免疫会降低传播概率。然后,我们应用该模型来解决毒株动态中的基本问题,特别关注流感的大流行间期动态。该模型表明,毒株有“聚集”的趋势。对于相对于宿主寿命较长的感染期,多个聚集簇可能共存。相比之下,较短的感染期会导致在任何给定时间出现单一的优势聚集簇。我们展示了聚集簇替换的速度如何取决于交叉免疫的特异性和潜在的病原体突变率。

相似文献

1
Dynamics and selection of many-strain pathogens.
Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):17209-14. doi: 10.1073/pnas.252512799. Epub 2002 Dec 12.
2
The impact of cross-immunity, mutation and stochastic extinction on pathogen diversity.
Proc Biol Sci. 2004 Dec 7;271(1556):2431-8. doi: 10.1098/rspb.2004.2877.
3
On the determinants of population structure in antigenically diverse pathogens.
Proc Biol Sci. 2002 Feb 7;269(1488):227-33. doi: 10.1098/rspb.2001.1869.
4
On the role of cross-immunity and vaccines on the survival of less fit flu-strains.
Theor Popul Biol. 2007 Feb;71(1):20-9. doi: 10.1016/j.tpb.2006.07.002. Epub 2006 Jul 11.
5
Characterizing the symmetric equilibrium of multi-strain host-pathogen systems in the presence of cross immunity.
J Math Biol. 2005 May;50(5):531-58. doi: 10.1007/s00285-004-0292-4. Epub 2005 Mar 15.
6
Cross-immunity, invasion and coexistence of pathogen strains in epidemiological models with one-dimensional antigenic space.
Math Biosci. 2007 Dec;210(2):680-99. doi: 10.1016/j.mbs.2007.08.001. Epub 2007 Aug 24.
7
Coexistence conditions for strains of influenza with immune cross-reaction.
J Theor Biol. 2010 Jan 7;262(1):48-57. doi: 10.1016/j.jtbi.2009.09.015. Epub 2009 Sep 18.
8
Co-circulation of influenza A virus strains and emergence of pandemic via reassortment: the role of cross-immunity.
Epidemics. 2013 Mar;5(1):20-33. doi: 10.1016/j.epidem.2012.10.003. Epub 2012 Nov 6.
9
A speed limit on serial strain replacement from original antigenic sin.
Proc Natl Acad Sci U S A. 2024 Jun 18;121(25):e2400202121. doi: 10.1073/pnas.2400202121. Epub 2024 Jun 10.
10
Ecological and immunological determinants of influenza evolution.
Nature. 2003 Mar 27;422(6930):428-33. doi: 10.1038/nature01509.

引用本文的文献

1
One pathogen does not an epidemic make: a review of interacting contagions, diseases, beliefs, and stories.
Npj Complex. 2025;2(1):26. doi: 10.1038/s44260-025-00050-2. Epub 2025 Sep 1.
2
Eco-evolutionary dynamics of pathogen immune-escape: deriving a population-level phylodynamic curve.
J R Soc Interface. 2025 Apr;22(225):20240675. doi: 10.1098/rsif.2024.0675. Epub 2025 Apr 2.
3
Seasonal forcing and waning immunity drive the sub-annual periodicity of the COVID-19 epidemic.
medRxiv. 2025 Mar 10:2025.03.05.25323464. doi: 10.1101/2025.03.05.25323464.
4
Concepts and Methods for Predicting Viral Evolution.
Methods Mol Biol. 2025;2890:253-290. doi: 10.1007/978-1-0716-4326-6_14.
5
Eco-evolutionary dynamics of adapting pathogens and host immunity.
Elife. 2024 Dec 27;13:RP97350. doi: 10.7554/eLife.97350.
6
Frequency dynamics predict viral fitness, antigenic relationships and epidemic growth.
medRxiv. 2025 Jan 23:2024.12.02.24318334. doi: 10.1101/2024.12.02.24318334.
8
Recent approaches in computational modelling for controlling pathogen threats.
Life Sci Alliance. 2024 Jun 21;7(9). doi: 10.26508/lsa.202402666. Print 2024 Sep.
9
A speed limit on serial strain replacement from original antigenic sin.
Proc Natl Acad Sci U S A. 2024 Jun 18;121(25):e2400202121. doi: 10.1073/pnas.2400202121. Epub 2024 Jun 10.
10
Concepts and methods for predicting viral evolution.
bioRxiv. 2024 Nov 30:2024.03.19.585703. doi: 10.1101/2024.03.19.585703.

本文引用的文献

1
(Meta)population dynamics of infectious diseases.
Trends Ecol Evol. 1997 Oct;12(10):395-9. doi: 10.1016/s0169-5347(97)01174-9.
2
Evolutionary change of predicted cytotoxic T cell epitopes of dengue virus.
Infect Genet Evol. 2001 Dec;1(2):123-30. doi: 10.1016/s1567-1348(01)00013-2.
3
The onset of oscillatory dynamics in models of multiple disease strains.
J Math Biol. 2002 Dec;45(6):471-510. doi: 10.1007/s00285-002-0163-9.
4
Mutator clones of Neisseria meningitidis in epidemic serogroup A disease.
Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6103-7. doi: 10.1073/pnas.092568699.
5
Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus.
Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6263-8. doi: 10.1073/pnas.082110799. Epub 2002 Apr 23.
6
A status-based approach to multiple strain dynamics.
J Math Biol. 2002 Feb;44(2):169-84. doi: 10.1007/s002850100120.
7
On the determinants of population structure in antigenically diverse pathogens.
Proc Biol Sci. 2002 Feb 7;269(1488):227-33. doi: 10.1098/rspb.2001.1869.
8
Travelling waves and spatial hierarchies in measles epidemics.
Nature. 2001 Dec 13;414(6865):716-23. doi: 10.1038/414716a.
9
Meiotic recombination, cross-reactivity, and persistence in Plasmodium falciparum.
Evolution. 2001 Jul;55(7):1299-307. doi: 10.1111/j.0014-3820.2001.tb00652.x.
10
Variable efficacy of repeated annual influenza vaccination.
Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14001-6. doi: 10.1073/pnas.96.24.14001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验