Suppr超能文献

一种病原体并不构成一场流行病:对相互作用的传染病、疾病、观念及故事的综述

One pathogen does not an epidemic make: a review of interacting contagions, diseases, beliefs, and stories.

作者信息

Hébert-Dufresne Laurent, Ahn Yong-Yeol, Allard Antoine, Colizza Vittoria, Crothers Jessica W, Dodds Peter Sheridan, Galesic Mirta, Ghanbarnejad Fakhteh, Gravel Dominique, Hammond Ross A, Lerman Kristina, Lovato Juniper, Openshaw John J, Redner S, Scarpino Samuel V, St-Onge Guillaume, Tangherlini Timothy R, Young Jean-Gabriel

机构信息

Vermont Complex Systems Institute, University of Vermont, Burlington, VT USA.

Translational Global Infectious Disease Research Center, University of Vermont, Burlington, VT USA.

出版信息

Npj Complex. 2025;2(1):26. doi: 10.1038/s44260-025-00050-2. Epub 2025 Sep 1.

Abstract

From pathogens and computer viruses to genes and memes, contagion models have found widespread utility across the natural and social sciences. Despite their success and breadth of adoption, the approach and structure of these models remain surprisingly siloed by field. Given the siloed nature of their development and widespread use, one persistent assumption is that a given contagion can be studied in isolation, independently from what else might be spreading in the population. In reality, countless contagions of biological and social nature interact within hosts (interacting with existing beliefs, or the immune system) and across hosts (interacting in the environment, or affecting transmission mechanisms). Additionally, from a modeling perspective, we know that relaxing these assumptions has profound effects on the physics and translational implications of the models. Here, we review mechanisms for interactions in social and biological contagions, as well as the models and frameworks developed to include these interactions in the study of the contagions. We highlight existing problems related to the inference of interactions and to the scalability of mathematical models and identify promising avenues of future inquiries. In doing so, we highlight the need for interdisciplinary efforts under a unified science of contagions and for removing a common dichotomy between social and biological contagions.

摘要

从病原体和计算机病毒到基因和文化基因,传播模型在自然科学和社会科学领域都有广泛应用。尽管这些模型取得了成功且应用广泛,但其方法和结构在不同领域仍存在惊人的孤立状态。鉴于其发展和广泛使用的孤立性质,一个长期存在的假设是,给定的一种传播可以独立于人群中可能正在传播的其他事物进行研究。实际上,无数生物和社会性质的传播在宿主内部(与现有信念或免疫系统相互作用)以及宿主之间(在环境中相互作用或影响传播机制)相互作用。此外,从建模角度来看,我们知道放宽这些假设会对模型的物理学和转化意义产生深远影响。在这里,我们回顾社会和生物传播中的相互作用机制,以及为在传播研究中纳入这些相互作用而开发的模型和框架。我们强调与相互作用推断以及数学模型可扩展性相关的现有问题,并确定未来研究的有前景途径。在此过程中,我们强调在统一的传播科学下进行跨学科努力以及消除社会传播和生物传播之间常见二分法的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验