Haux J Eric, Lockridge Oksana, Casida John E
Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720-3112, USA.
Chem Res Toxicol. 2002 Dec;15(12):1527-33. doi: 10.1021/tx020042w.
Butyrylcholinesterase (BChE) is inhibited by the plant growth regulator (2-chloroethyl)phosphonic acid (ethephon) as observed 25 years ago both in vitro and in vivo in rats and mice and more recently in subchronic studies at low doses with human subjects. The proposed mechanism is phosphorylation of the BChE active site at S198 by ethephon dianion. The present study tests this hypothesis directly using [(33)P]ethephon and recombinant BChE (rBChE) with single amino acid substitutions and further evaluates if BChE is the most sensitive esterase target in vitro and with mice in vivo. [(33)P]Ethephon labels purified rBChE but not enzymatically inactive diethylphosphoryl-rBChE (derivatized at S198 by preincubation with chlorpyrifos oxon) or several other esterases and proteins. Amino acid substitutions that greatly reduce rBChE sensitivity to ethephon are G117H and G117K in the oxyanion hole (which may interfere with hydrogen bonding between glycine-N-H and ethephon dianion) and A328F, A328W, and A328Y (perhaps by impeding access to the active site gorge). Other substitutions that do not affect sensitivity are D70N, D70K, D70G, and E197Q which are not directly involved in the catalytic triad. The effect of pH and buffer composition on inhibition supports the hypothesis that ethephon dianion is the actual phosphorylating agent without activation by divalent cations. Human plasma BChE in vitro and mouse plasma BChE in vitro and in vivo are more sensitive to ethephon than any other esterases detected by butyrylthiocholine or 1-naphthyl acetate hydrolysis in native-PAGE. All mouse liver esterases observed are less sensitive than plasma BChE to ethephon in vitro and in vivo. More than a dozen other esterases examined are 10-100-fold less sensitive than BChE to ethephon. Thus, BChE inhibition continues to be the most sensitive marker of ethephon exposure.
正如25年前在大鼠和小鼠体内外所观察到的,以及最近在对人类受试者进行的低剂量亚慢性研究中所发现的那样,植物生长调节剂(2-氯乙基)膦酸(乙烯利)可抑制丁酰胆碱酯酶(BChE)。提出的机制是乙烯利二价阴离子使BChE活性位点的S198发生磷酸化。本研究使用[³³P]乙烯利和具有单个氨基酸取代的重组BChE(rBChE)直接检验这一假设,并进一步评估BChE在体外和在小鼠体内是否是最敏感的酯酶靶点。[³³P]乙烯利可标记纯化的rBChE,但不能标记无酶活性的二乙基磷酰-rBChE(通过与毒死蜱氧磷预孵育在S198处衍生化)或其他几种酯酶和蛋白质。极大降低rBChE对乙烯利敏感性的氨基酸取代是氧阴离子孔中的G117H和G117K(这可能会干扰甘氨酸-N-H与乙烯利二价阴离子之间的氢键)以及A328F、A328W和A328Y(可能是通过阻碍进入活性位点峡谷)。不影响敏感性的其他取代是D70N、D70K、D70G和E197Q,它们不直接参与催化三联体。pH和缓冲液组成对抑制作用的影响支持了乙烯利二价阴离子是实际磷酸化剂且无需二价阳离子激活的假设。在体外,人血浆BChE以及在体外和体内的小鼠血浆BChE对乙烯利的敏感性高于通过天然聚丙烯酰胺凝胶电泳中丁酰硫代胆碱或乙酸-1-萘酯水解检测到的任何其他酯酶。在体外和体内,观察到的所有小鼠肝脏酯酶对乙烯利的敏感性均低于血浆BChE。所检测的其他十几种酯酶对乙烯利的敏感性比BChE低10至100倍。因此,BChE抑制仍然是乙烯利暴露最敏感的标志物。