Suppr超能文献

缺血预处理、二氮嗪和5-羟基癸酸对大鼠心脏线粒体体积和呼吸的影响。

The effects of ischaemic preconditioning, diazoxide and 5-hydroxydecanoate on rat heart mitochondrial volume and respiration.

作者信息

Lim Kelvin H H, Javadov Sabzali A, Das Manika, Clarke Samantha J, Suleiman M-Saadeh, Halestrap Andrew P

机构信息

The Bristol Heart Institute, Bristol Royal Infirmary, Malborough Street, Bristol BS2 8HW, UK.

出版信息

J Physiol. 2002 Dec 15;545(3):961-74. doi: 10.1113/jphysiol.2002.031484.

Abstract

Studies with different ATP-sensitive potassium (K(ATP)) channel openers and blockers have implicated opening of mitochondrial K(ATP) (mitoK(ATP)) channels in ischaemic preconditioning (IPC). It would be predicted that this should increase mitochondrial matrix volume and hence respiratory chain activity. Here we confirm this directly using mitochondria rapidly isolated from Langendorff-perfused hearts. Pre-ischaemic matrix volumes for control and IPC hearts (expressed in microl per mg protein +/- S.E.M., n = 6), determined with (3)H(2)O and [(14)C]sucrose, were 0.67 +/- 0.02 and 0.83 +/- 0.04 (P < 0.01), respectively, increasing to 1.01 +/- 0.05 and 1.18 +/- 0.02 following 30 min ischaemia (P < 0.01) and to 1.21 +/- 0.13 and 1.26 +/- 0.25 after 30 min reperfusion. Rates of ADP-stimulated (State 3) and uncoupled 2-oxoglutarate and succinate oxidation increased in parallel with matrix volume until maximum rates were reached at volumes of 1.1 microl ml(-1) or greater. The mitoK(ATP) channel opener, diazoxide (50 microM), caused a similar increase in matrix volume, but with inhibition rather than activation of succinate and 2-oxoglutarate oxidation. Direct addition of diazoxide (50 microM) to isolated mitochondria also inhibited State 3 succinate and 2-oxoglutarate oxidation by 30 %, but not that of palmitoyl carnitine. Unexpectedly, treatment of hearts with the mitoK(ATP) channel blocker 5-hydroxydecanoate (5HD) at 100 or 300 microM, also increased mitochondrial volume and inhibited respiration. In isolated mitochondria, 5HD was rapidly converted to 5HD-CoA by mitochondrial fatty acyl CoA synthetase and acted as a weak substrate or inhibitor of respiration depending on the conditions employed. These data highlight the dangers of using 5HD and diazoxide as specific modulators of mitoK(ATP) channels in the heart.

摘要

使用不同的ATP敏感性钾(K(ATP))通道开放剂和阻滞剂进行的研究表明,线粒体K(ATP)(mitoK(ATP))通道的开放与缺血预处理(IPC)有关。据预测,这应该会增加线粒体基质体积,从而提高呼吸链活性。在此,我们使用从Langendorff灌注心脏快速分离的线粒体直接证实了这一点。用(3)H(2)O和[(14)C]蔗糖测定的对照心脏和IPC心脏的缺血前基质体积(以微升每毫克蛋白质±标准误表示,n = 6)分别为0.67±0.02和0.83±0.04(P < 0.01),在30分钟缺血后分别增加到1.01±0.05和1.18±0.02(P < 0.01),在30分钟再灌注后增加到1.21±0.13和1.26±0.25。ADP刺激的(状态3)以及解偶联的2-氧代戊二酸和琥珀酸氧化速率与基质体积平行增加,直到在体积达到1.1微升毫升(-1)或更大时达到最大速率。mitoK(ATP)通道开放剂二氮嗪(50微摩尔)导致基质体积有类似增加,但对琥珀酸和2-氧代戊二酸氧化起抑制而非激活作用。将二氮嗪(50微摩尔)直接添加到分离的线粒体中也会使状态3的琥珀酸和2-氧代戊二酸氧化受到30%的抑制,但对棕榈酰肉碱的氧化无抑制作用。出乎意料的是,用100或300微摩尔的mitoK(ATP)通道阻滞剂5-羟基癸酸(5HD)处理心脏,也会增加线粒体体积并抑制呼吸。在分离的线粒体中,5HD被线粒体脂肪酰辅酶A合成酶迅速转化为5HD-CoA,并根据所采用的条件作为呼吸的弱底物或抑制剂起作用。这些数据突出了将5HD和二氮嗪用作心脏中mitoK(ATP)通道特异性调节剂的危险性。

相似文献

2
K(ATP) channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart.
J Physiol. 2002 Aug 1;542(Pt 3):735-41. doi: 10.1113/jphysiol.2002.023960.
6
Protection of cardiac mitochondria by diazoxide and protein kinase C: implications for ischemic preconditioning.
Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):3312-7. doi: 10.1073/pnas.052713199. Epub 2002 Feb 26.
7
Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning?
Cardiovasc Res. 2002 Aug 15;55(3):534-43. doi: 10.1016/s0008-6363(02)00455-8.
9
Myocardial preconditioning against ischemia-reperfusion injury is abolished in Zucker obese rats with insulin resistance.
Am J Physiol Regul Integr Comp Physiol. 2007 Feb;292(2):R920-6. doi: 10.1152/ajpregu.00520.2006. Epub 2006 Sep 28.

引用本文的文献

2
Ion channel-mediated mitochondrial volume regulation and its relationship with mitochondrial dynamics.
Channels (Austin). 2024 Dec;18(1):2335467. doi: 10.1080/19336950.2024.2335467. Epub 2024 Mar 28.
3
Mitochondrial Volume Regulation and Swelling Mechanisms in Cardiomyocytes.
Antioxidants (Basel). 2023 Jul 28;12(8):1517. doi: 10.3390/antiox12081517.
5
Connexin 43 in Mitochondria: What Do We Really Know About Its Function?
Front Physiol. 2022 Jul 4;13:928934. doi: 10.3389/fphys.2022.928934. eCollection 2022.
7
Sirtuin 5 depletion impairs mitochondrial function in human proximal tubular epithelial cells.
Sci Rep. 2021 Jul 30;11(1):15510. doi: 10.1038/s41598-021-94185-6.
8
Intracellular Ca Imbalance Critically Contributes to Paraptosis.
Front Cell Dev Biol. 2021 Jan 12;8:607844. doi: 10.3389/fcell.2020.607844. eCollection 2020.

本文引用的文献

1
Insight into mitochondrial structure and function from electron tomography.
Biochim Biophys Acta. 2002 Sep 10;1555(1-3):196-203. doi: 10.1016/s0005-2728(02)00278-5.
2
K(ATP) channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart.
J Physiol. 2002 Aug 1;542(Pt 3):735-41. doi: 10.1113/jphysiol.2002.023960.
3
Opening of mitochondrial K(ATP) channel occurs downstream of PKC-epsilon activation in the mechanism of preconditioning.
Am J Physiol Heart Circ Physiol. 2002 Jul;283(1):H440-7. doi: 10.1152/ajpheart.00434.2001.
4
Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast.
Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3370-5. doi: 10.1073/pnas.052545099.
6
Control of mitochondrial beta-oxidation flux.
Prog Lipid Res. 2002 May;41(3):197-239. doi: 10.1016/s0163-7827(01)00024-8.
8
Diazoxide induced cardioprotection: what comes first, K(ATP) channels or reactive oxygen species?
Cardiovasc Res. 2001 Sep;51(4):633-6. doi: 10.1016/s0008-6363(01)00396-0.
10
Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism.
Circ Res. 2001 Apr 27;88(8):802-9. doi: 10.1161/hh0801.089342.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验