Suppr超能文献

Catalysis on the coastline: theozyme, molecular dynamics, and free energy perturbation analysis of antibody 21D8 catalysis of the decarboxylation of 5-nitro-3-carboxybenzisoxazole.

作者信息

Ujaque Gregori, Tantillo Dean J, Hu Yunfeng, Houk K N, Hotta Kinya, Hilvert Donald

机构信息

Department of Chemistry and Biochemistry, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, California 90095-1569, USA.

出版信息

J Comput Chem. 2003 Jan 15;24(1):98-110. doi: 10.1002/jcc.10151.

Abstract

Antibody 21D8 catalyzes the decarboxylation of 5-nitro-3-carboxybenzisoxazole. The hapten used was designed to induce an antibody binding site with anion binders for the carboxylate, plus a nonpolar environment to accelerate decarboxylation. A recent X-ray crystal structure of 21D8 has shown that the binding pocket contains an array of both polar and charged residues. Nevertheless, 21D8 is able to catalyze a reaction that involves a decrease in polarity from reactant to transition state. The origins of this phenomenon were explored using various computational strategies-quantum mechanics, theozyme models, docking, molecular dynamics, free energy perturbation, and linear interaction energy-the combination of which has produced a consistent picture of catalysis. By partially desolvating the charged carboxylate, 21D8 manages to effect "catalysis on the coastline," without burying the carboxylate in a nonpolar region of the binding pocket. The results have implications for that broad class of enzyme and antibody catalyzed reactions that involve the conversion of a substrate with a relatively localized charge into a transition state with a highly dispersed charge.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验