Suppr超能文献

从量子力学理论酶推导出来的酶活性位点几何结构与酶 - 抑制剂复合物的晶体结构有多相似?对酶设计的启示。

How similar are enzyme active site geometries derived from quantum mechanical theozymes to crystal structures of enzyme-inhibitor complexes? Implications for enzyme design.

作者信息

Dechancie Jason, Clemente Fernando R, Smith Adam J T, Gunaydin Hakan, Zhao Yi-Lei, Zhang Xiyun, Houk K N

机构信息

Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA.

出版信息

Protein Sci. 2007 Sep;16(9):1851-66. doi: 10.1110/ps.072963707.

Abstract

Quantum mechanical optimizations of theoretical enzymes (theozymes), which are predicted catalytic arrays of biological functionalities stabilizing a transition state, have been carried out for a set of nine diverse enzyme active sites. For each enzyme, the theozyme for the rate-determining transition state plus the catalytic groups modeled by side-chain mimics was optimized using B3LYP/6-31G(d) or, in one case, HF/3-21G(d) quantum mechanical calculations. To determine if the theozyme can reproduce the natural evolutionary catalytic geometry, the positions of optimized catalytic atoms, i.e., covalent, partial covalent, or stabilizing interactions with transition state atoms, are compared to the positions of the atoms in the X-ray crystal structure with a bound inhibitor. These structure comparisons are contrasted to computed substrate-active site structures surrounded by the same theozyme residues. The theozyme/transition structure is shown to predict geometries of active sites with an average RMSD of 0.64 A from the crystal structure, while the RMSD for the bound intermediate complexes are significantly higher at 1.42 A. The implications for computational enzyme design are discussed.

摘要

对一组九个不同的酶活性位点进行了理论酶(theozymes)的量子力学优化,理论酶是预测的稳定过渡态的生物功能催化阵列。对于每种酶,使用B3LYP/6-31G(d)或在一种情况下使用HF/3-21G(d)量子力学计算对速率决定过渡态的theozyme加上由侧链模拟物建模的催化基团进行了优化。为了确定theozyme是否能重现自然进化的催化几何结构,将优化后的催化原子(即与过渡态原子的共价、部分共价或稳定相互作用)的位置与结合抑制剂的X射线晶体结构中的原子位置进行比较。这些结构比较与由相同的theozyme残基包围的计算出的底物-活性位点结构形成对比。结果表明,theozyme/过渡结构预测的活性位点几何结构与晶体结构的平均RMSD为0.64 Å,而结合中间体复合物的RMSD则显著更高,为1.42 Å。文中讨论了对计算酶设计的影响。

相似文献

2
Quantum mechanical design of enzyme active sites.
J Org Chem. 2008 Feb 1;73(3):889-99. doi: 10.1021/jo701974n. Epub 2008 Jan 8.
7
A computational study of the deacylation mechanism of human butyrylcholinesterase.
Biochemistry. 2006 Jun 20;45(24):7529-43. doi: 10.1021/bi052176p.
8
Structure of Escherichia coli tryptophanase.
Acta Crystallogr D Biol Crystallogr. 2006 Jul;62(Pt 7):814-23. doi: 10.1107/S0907444906019895. Epub 2006 Jun 20.
10
Crystal structure at 1.9A of E. coli ClpP with a peptide covalently bound at the active site.
J Struct Biol. 2006 Oct;156(1):165-74. doi: 10.1016/j.jsb.2006.03.013. Epub 2006 Apr 21.

引用本文的文献

1
Computational Identification of Potential Organocatalysts (CIPOC) Reveals a 2-aminoDMAP/Urea Catalyst Superior to Its Thiourea Analogue.
J Am Chem Soc. 2025 Mar 26;147(12):10078-10087. doi: 10.1021/jacs.4c10634. Epub 2025 Mar 11.
3
Modulation of inherent dynamical tendencies of the bisabolyl cation preorganization in -isozizaene synthase.
Chem Sci. 2015 Apr 1;6(4):2347-2353. doi: 10.1039/c4sc03782k. Epub 2015 Feb 2.
4
Investigations on recyclisation and hydrolysis in avibactam mediated serine β-lactamase inhibition.
Org Biomol Chem. 2016 Apr 26;14(17):4116-28. doi: 10.1039/c6ob00353b.
7
Computational enzyme design approaches with significant biological outcomes: progress and challenges.
Comput Struct Biotechnol J. 2012 Oct 17;2:e201209007. doi: 10.5936/csbj.201209007. eCollection 2012.
9
Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):149-54. doi: 10.1073/pnas.1316609111. Epub 2013 Dec 16.
10
Molecular modeling of the reaction pathway and hydride transfer reactions of HMG-CoA reductase.
Biochemistry. 2012 Oct 9;51(40):7983-95. doi: 10.1021/bi3008593. Epub 2012 Sep 25.

本文引用的文献

1
Effects of Arg90 Neutralization on the Enzyme-Catalyzed Rearrangement of Chorismate to Prephenate.
J Chem Theory Comput. 2005 Jul;1(4):617-25. doi: 10.1021/ct0500803.
2
Nature of forces between large molecules of biological interest.
Nature. 1948 May 8;161(4097):707-9. doi: 10.1038/161707a0.
3
New algorithms and an in silico benchmark for computational enzyme design.
Protein Sci. 2006 Dec;15(12):2785-94. doi: 10.1110/ps.062353106.
4
Combinatorial methods for small-molecule placement in computational enzyme design.
Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16710-5. doi: 10.1073/pnas.0607691103. Epub 2006 Oct 30.
5
Modeling enzymatic reactions involving transition metals.
Acc Chem Res. 2006 Oct;39(10):729-38. doi: 10.1021/ar050123u.
7
Tyrosyl-DNA phosphodiesterase (Tdp1) participates in the repair of Top2-mediated DNA damage.
Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):8953-8. doi: 10.1073/pnas.0603455103. Epub 2006 Jun 2.
8
Understanding nature's catalytic toolkit.
Trends Biochem Sci. 2005 Nov;30(11):622-9. doi: 10.1016/j.tibs.2005.09.006. Epub 2005 Oct 7.
10
Why enzymes are proficient catalysts: beyond the Pauling paradigm.
Acc Chem Res. 2005 May;38(5):379-85. doi: 10.1021/ar040257s.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验