Dechancie Jason, Clemente Fernando R, Smith Adam J T, Gunaydin Hakan, Zhao Yi-Lei, Zhang Xiyun, Houk K N
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA.
Protein Sci. 2007 Sep;16(9):1851-66. doi: 10.1110/ps.072963707.
Quantum mechanical optimizations of theoretical enzymes (theozymes), which are predicted catalytic arrays of biological functionalities stabilizing a transition state, have been carried out for a set of nine diverse enzyme active sites. For each enzyme, the theozyme for the rate-determining transition state plus the catalytic groups modeled by side-chain mimics was optimized using B3LYP/6-31G(d) or, in one case, HF/3-21G(d) quantum mechanical calculations. To determine if the theozyme can reproduce the natural evolutionary catalytic geometry, the positions of optimized catalytic atoms, i.e., covalent, partial covalent, or stabilizing interactions with transition state atoms, are compared to the positions of the atoms in the X-ray crystal structure with a bound inhibitor. These structure comparisons are contrasted to computed substrate-active site structures surrounded by the same theozyme residues. The theozyme/transition structure is shown to predict geometries of active sites with an average RMSD of 0.64 A from the crystal structure, while the RMSD for the bound intermediate complexes are significantly higher at 1.42 A. The implications for computational enzyme design are discussed.
对一组九个不同的酶活性位点进行了理论酶(theozymes)的量子力学优化,理论酶是预测的稳定过渡态的生物功能催化阵列。对于每种酶,使用B3LYP/6-31G(d)或在一种情况下使用HF/3-21G(d)量子力学计算对速率决定过渡态的theozyme加上由侧链模拟物建模的催化基团进行了优化。为了确定theozyme是否能重现自然进化的催化几何结构,将优化后的催化原子(即与过渡态原子的共价、部分共价或稳定相互作用)的位置与结合抑制剂的X射线晶体结构中的原子位置进行比较。这些结构比较与由相同的theozyme残基包围的计算出的底物-活性位点结构形成对比。结果表明,theozyme/过渡结构预测的活性位点几何结构与晶体结构的平均RMSD为0.64 Å,而结合中间体复合物的RMSD则显著更高,为1.42 Å。文中讨论了对计算酶设计的影响。