Suppr超能文献

整群随机试验中组内相关系数置信区间方法的比较

A comparison of confidence interval methods for the intraclass correlation coefficient in cluster randomized trials.

作者信息

Ukoumunne Obioha C

机构信息

Department of Public Health Sciences, King's College London, 5th Floor, Capital House, 42 Weston Street, London SE1 3QD, UK.

出版信息

Stat Med. 2002 Dec 30;21(24):3757-74. doi: 10.1002/sim.1330.

Abstract

This study compared different methods for assigning confidence intervals to the analysis of variance estimator of the intraclass correlation coefficient (rho). The context of the comparison was the use of rho to estimate the variance inflation factor when planning cluster randomized trials. The methods were compared using Monte Carlo simulations of unbalanced clustered data and data from a cluster randomized trial of an intervention to improve the management of asthma in a general practice setting. The coverage and precision of the intervals were compared for data with different numbers of clusters, mean numbers of subjects per cluster and underlying values of rho. The performance of the methods was also compared for data with Normal and non-Normally distributed cluster specific effects. Results of the simulations showed that methods based upon the variance ratio statistic provided greater coverage levels than those based upon large sample approximations to the standard error of rho. Searle's method provided close to nominal coverage for data with Normally distributed random effects. Adjusted versions of Searle's method to allow for lack of balance in the data generally did not improve upon it either in terms of coverage or precision. Analyses of the trial data, however, showed that limits provided by Thomas and Hultquist's method may differ from those of the other variance ratio statistic methods when the arithmetic mean differs markedly from the harmonic mean cluster size. The simulation results demonstrated that marked non-Normality in the cluster level random effects compromised the performance of all methods. Confidence intervals for the methods were generally wide relative to the underlying size of rho suggesting that there may be great uncertainty associated with sample size calculations for cluster trials where large clusters are randomized. Data from cluster based studies with sample sizes much larger than those typical of cluster randomized trials are required to estimate rho with a reasonable degree of precision.

摘要

本研究比较了为组内相关系数(rho)的方差分析估计值指定置信区间的不同方法。比较的背景是在规划整群随机试验时使用rho来估计方差膨胀因子。使用不平衡整群数据的蒙特卡罗模拟以及一项在普通实践环境中改善哮喘管理干预措施的整群随机试验数据对这些方法进行了比较。针对具有不同数量的群组、每个群组的平均受试者数量以及rho的基础值的数据,比较了区间的覆盖率和精度。还针对具有正态分布和非正态分布的群组特定效应的数据比较了这些方法的性能。模拟结果表明,基于方差比统计量的方法比基于rho标准误差的大样本近似方法具有更高的覆盖率。对于具有正态分布随机效应的数据,塞尔的方法提供了接近名义覆盖率的结果。为考虑数据不平衡而对塞尔的方法进行的调整版本,在覆盖率或精度方面通常也没有比它有所改进。然而,对试验数据的分析表明,当算术平均值与调和平均群组大小明显不同时,托马斯和赫尔特奎斯特方法提供的界限可能与其他方差比统计量方法的界限不同。模拟结果表明,群组水平随机效应中的明显非正态性损害了所有方法的性能。相对于rho的基础大小,这些方法的置信区间通常较宽,这表明对于大群组被随机化的整群试验,样本量计算可能存在很大的不确定性。需要来自样本量比典型整群随机试验大得多的基于群组研究的数据,才能以合理的精度估计rho。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验