Suppr超能文献

在分析整群随机试验成本数据中使用自助法:一些模拟结果

Use of the bootstrap in analysing cost data from cluster randomised trials: some simulation results.

作者信息

Flynn Terry N, Peters Tim J

机构信息

MRC Health Services Research Collaboration, Department of Social Medicine, University of Bristol, Canynge Hall, Whiteladies Road, Bristol BS8 2PR, UK.

出版信息

BMC Health Serv Res. 2004 Nov 18;4(1):33. doi: 10.1186/1472-6963-4-33.

Abstract

BACKGROUND

This work has investigated under what conditions confidence intervals around the differences in mean costs from a cluster RCT are suitable for estimation using a commonly used cluster-adjusted bootstrap in preference to methods that utilise the Huber-White robust estimator of variance. The bootstrap's main advantage is in dealing with skewed data, which often characterise patient costs. However, it is insufficiently well recognised that one method of adjusting the bootstrap to deal with clustered data is only valid in large samples. In particular, the requirement that the number of clusters randomised should be large would not be satisfied in many cluster RCTs performed to date.

METHODS

The performances of confidence intervals for simple differences in mean costs utilising a robust (cluster-adjusted) standard error and from two cluster-adjusted bootstrap procedures were compared in terms of confidence interval coverage in a large number of simulations. Parameters varied included the intracluster correlation coefficient, the sample size and the distributions used to generate the data.

RESULTS

The bootstrap's advantage in dealing with skewed data was found to be outweighed by its poor confidence interval coverage when the number of clusters was at the level frequently found in cluster RCTs in practice. Simulations showed that confidence intervals based on robust methods of standard error estimation achieved coverage rates between 93.5% and 94.8% for a 95% nominal level whereas those for the bootstrap ranged between 86.4% and 93.8%.

CONCLUSION

In general, 24 clusters per treatment arm is probably the minimum number for which one would even begin to consider the bootstrap in preference to traditional robust methods, for the parameter combinations investigated here. At least this number of clusters and extremely skewed data would be necessary for the bootstrap to be considered in favour of the robust method. There is a need for further investigation of more complex bootstrap procedures if economic data from cluster RCTs are to be analysed appropriately.

摘要

背景

本研究探讨了在何种条件下,群组随机对照试验(cluster RCT)中平均成本差异的置信区间适合使用常用的群组调整自助法(cluster-adjusted bootstrap)进行估计,而非使用基于稳健方差估计的方法(如Huber-White稳健估计量)。自助法的主要优势在于处理偏态数据,而患者成本数据往往具有这一特征。然而,人们尚未充分认识到,一种调整自助法以处理聚类数据的方法仅在大样本中有效。特别是,迄今为止进行的许多群组随机对照试验都无法满足随机分组的群组数量需足够多这一要求。

方法

在大量模拟中,比较了使用稳健(群组调整)标准误以及两种群组调整自助法得到的平均成本简单差异的置信区间在区间覆盖方面的表现。变化的参数包括组内相关系数、样本量以及用于生成数据的分布。

结果

当群组数量处于实际群组随机对照试验中常见的水平时,研究发现自助法在处理偏态数据方面的优势被其较差的置信区间覆盖情况所抵消。模拟显示,基于稳健标准误估计方法的置信区间在名义水平为95%时的覆盖率在93.5%至94.8%之间,而自助法的覆盖率则在86.4%至93.8%之间。

结论

总体而言,对于此处研究的参数组合,每个治疗组至少24个群组可能是人们开始考虑使用自助法而非传统稳健方法的最小群组数量。至少需要这么多群组以及极度偏态的数据,才会考虑使用自助法而非稳健方法。如果要对群组随机对照试验的经济数据进行恰当分析,有必要进一步研究更复杂的自助法程序。

相似文献

1
Use of the bootstrap in analysing cost data from cluster randomised trials: some simulation results.
BMC Health Serv Res. 2004 Nov 18;4(1):33. doi: 10.1186/1472-6963-4-33.
2
Non-parametric bootstrap confidence intervals for the intraclass correlation coefficient.
Stat Med. 2003 Dec 30;22(24):3805-21. doi: 10.1002/sim.1643.
4
Imputation strategies for missing continuous outcomes in cluster randomized trials.
Biom J. 2008 Jun;50(3):329-45. doi: 10.1002/bimj.200710423.
10
Bootstrap estimation of benchmark doses and confidence limits with clustered quantal data.
Risk Anal. 2007 Apr;27(2):447-65. doi: 10.1111/j.1539-6924.2007.00897.x.

引用本文的文献

1
A weighted Jackknife approach utilizing linear model based-estimators for clustered data.
Commun Stat Simul Comput. 2024;53(2):1048-1067. doi: 10.1080/03610918.2022.2039396. Epub 2022 Feb 23.
2
Increasing transparency in machine learning through bootstrap simulation and shapely additive explanations.
PLoS One. 2023 Feb 23;18(2):e0281922. doi: 10.1371/journal.pone.0281922. eCollection 2023.
5
Using Cluster Bootstrapping to Analyze Nested Data With a Few Clusters.
Educ Psychol Meas. 2018 Apr;78(2):297-318. doi: 10.1177/0013164416678980. Epub 2016 Nov 24.
7
Developing appropriate methods for cost-effectiveness analysis of cluster randomized trials.
Med Decis Making. 2012 Mar-Apr;32(2):350-61. doi: 10.1177/0272989X11418372. Epub 2011 Oct 19.
8
Medical expenditures associated with diabetes among privately insured U.S. youth in 2007.
Diabetes Care. 2011 May;34(5):1097-101. doi: 10.2337/dc10-2177.
9
Methods for analyzing cost effectiveness data from cluster randomized trials.
Cost Eff Resour Alloc. 2007 Sep 6;5:12. doi: 10.1186/1478-7547-5-12.

本文引用的文献

1
Cluster trials in implementation research: estimation of intracluster correlation coefficients and sample size.
Stat Med. 2001 Feb 15;20(3):391-9. doi: 10.1002/1097-0258(20010215)20:3<391::aid-sim800>3.0.co;2-z.
3
Experimental and quasi-experimental designs for evaluating guideline implementation strategies.
Fam Pract. 2000 Feb;17 Suppl 1:S11-6. doi: 10.1093/fampra/17.suppl_1.s11.
4
Confidence intervals for cost-effectiveness ratios: the use of 'bootstrapping'.
J Health Serv Res Policy. 1997 Oct;2(4):253-5. doi: 10.1177/135581969700200410.
5
Statistical considerations in the design and analysis of community intervention trials.
J Clin Epidemiol. 1996 Apr;49(4):435-9. doi: 10.1016/0895-4356(95)00511-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验