Torquato S, Hyun S, Donev A
Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, USA.
Phys Rev Lett. 2002 Dec 23;89(26):266601. doi: 10.1103/PhysRevLett.89.266601. Epub 2002 Dec 9.
Composite materials are ideally suited to achieve multifunctionality since the best features of different materials can be combined to form a new material that has a broad spectrum of desired properties. Nature's ultimate multifunctional composites are biological materials. There are presently no simple examples that rigorously demonstrate the effect of competing property demands on composite microstructures. To illustrate the fascinating types of microstructures that can arise in multifunctional optimization, we maximize the simultaneous transport of heat and electricity in three-dimensional, two-phase composites using rigorous optimization techniques. Interestingly, we discover that the optimal three-dimensional structures are bicontinuous triply periodic minimal surfaces.
复合材料非常适合实现多功能性,因为不同材料的最佳特性可以结合起来形成一种具有广泛所需性能的新材料。自然界中终极的多功能复合材料是生物材料。目前还没有简单的例子能严格证明相互竞争的性能需求对复合微结构的影响。为了说明在多功能优化中可能出现的迷人的微结构类型,我们使用严格的优化技术在三维两相复合材料中最大化热和电的同时传输。有趣的是,我们发现最优的三维结构是双连续三重周期极小曲面。