Gao J B, Tung Wen-Wen, Rao Nageswara
Department of Electrical and Computer Engineering, EB 559, University of Florida, Gainesville 32611, USA.
Phys Rev Lett. 2002 Dec 16;89(25):254101. doi: 10.1103/PhysRevLett.89.254101. Epub 2002 Nov 27.
We study the effects of noise on the Lorenz equations in the parameter regime admitting two stable fixed point solutions and a strange attractor. We show that noise annihilates the two stable fixed point attractors and evicts a Hopf-bifurcation-like sequence and transition to chaos. The noise-induced oscillatory motions have very well defined period and amplitude, and this phenomenon is similar to stochastic resonance, but without a weak periodic forcing. When the noise level exceeds certain threshold value but is not too strong, the noise-induced signals enable an objective computation of the largest positive Lyapunov exponent, which characterize the signals to be truly chaotic.
我们研究了在参数区域中噪声对洛伦兹方程的影响,该参数区域存在两个稳定的不动点解和一个奇怪吸引子。我们表明,噪声消除了两个稳定的不动点吸引子,并引发了类似霍普夫分岔的序列并过渡到混沌。噪声诱导的振荡运动具有非常明确的周期和振幅,这种现象类似于随机共振,但没有弱周期强迫。当噪声水平超过某个阈值但不太强时,噪声诱导的信号能够客观地计算最大正李雅普诺夫指数,该指数表征信号为真正的混沌。