Wieczorek Sebastian
Mathematics Research Institute, University of Exeter, EX4 4QF, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Mar;79(3 Pt 2):036209. doi: 10.1103/PhysRevE.79.036209. Epub 2009 Mar 24.
This paper considers nonlinear dynamics in an ensemble of uncoupled lasers, each being a limit-cycle oscillator, which are driven by the same external white Gaussian noise. As the external-noise strength increases, there is an onset of synchronization and then subsequent loss of synchrony. Local analysis of the laser equations shows that synchronization becomes unstable via stochastic bifurcation to chaos, defined as a passing of the largest Lyapunov exponent through zero. The locus of this bifurcation is calculated in the three-dimensional parameter space defined by the Hopf parameter, amount of amplitude-phase coupling, and external-noise strength. Numerical comparison between the laser system and the normal form of Hopf bifurcation uncovers a square-root law for this stochastic bifurcation as well as strong enhancement in noise-induced chaos due to the laser's relaxation oscillation.
本文研究了由相同外部白高斯噪声驱动的一组非耦合激光器中的非线性动力学,每个激光器都是一个极限环振荡器。随着外部噪声强度的增加,会出现同步现象,随后同步又会丧失。对激光方程的局部分析表明,同步通过随机分岔到混沌而变得不稳定,混沌定义为最大李雅普诺夫指数穿过零。在由霍普夫参数、幅度 - 相位耦合量和外部噪声强度定义的三维参数空间中计算了这种分岔的轨迹。激光系统与霍普夫分岔范式之间的数值比较揭示了这种随机分岔的平方根定律,以及由于激光的弛豫振荡导致的噪声诱导混沌的强烈增强。