Suppr超能文献

利用系统发育树估计进化参数。

Estimation of evolutionary parameters with phylogenetic trees.

作者信息

Wang Qiang, Salter Laura A, Pearl Dennis K

机构信息

Department of Statistics, The Ohio State University, Columbus, OH 43210, USA.

出版信息

J Mol Evol. 2002 Dec;55(6):684-95. doi: 10.1007/s00239-002-2364-7.

Abstract

An important issue in the phylogenetic analysis of nucleotide sequence data using the maximum likelihood (ML) method is the underlying evolutionary model employed. We consider the problem of simultaneously estimating the tree topology and the parameters in the underlying substitution model and of obtaining estimates of the standard errors of these parameter estimates. Given a fixed tree topology and corresponding set of branch lengths, the ML estimates of standard evolutionary model parameters are asymptotically efficient, in the sense that their joint distribution is asymptotically normal with the variance-covariance matrix given by the inverse of the Fisher information matrix. We propose a new estimate of this conditional variance based on estimation of the expected information using a Monte Carlo sampling (MCS) method. Simulations are used to compare this conditional variance estimate to the standard technique of using the observed information under a variety of experimental conditions. In the case in which one wishes to estimate simultaneously the tree and parameters, we provide a bootstrapping approach that can be used in conjunction with the MCS method to estimate the unconditional standard error. The methods developed are applied to a real data set consisting of 30 papillomavirus sequences. This overall method is easily incorporated into standard bootstrapping procedures to allow for proper variance estimation.

摘要

在使用最大似然(ML)方法对核苷酸序列数据进行系统发育分析时,一个重要问题是所采用的潜在进化模型。我们考虑同时估计树拓扑结构和潜在替换模型中的参数,以及获得这些参数估计值的标准误差估计值的问题。给定一个固定的树拓扑结构和相应的一组分支长度,标准进化模型参数的最大似然估计是渐近有效的,即它们的联合分布渐近正态,其方差 - 协方差矩阵由费希尔信息矩阵的逆给出。我们基于使用蒙特卡罗抽样(MCS)方法估计期望信息,提出了这种条件方差的新估计方法。通过模拟在各种实验条件下将这种条件方差估计与使用观测信息的标准技术进行比较。在希望同时估计树和参数的情况下,我们提供了一种自举方法,该方法可与MCS方法结合使用以估计无条件标准误差。所开发的方法应用于由30个乳头瘤病毒序列组成的真实数据集。这种整体方法很容易纳入标准自举程序中以进行适当的方差估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验