Suppr超能文献

An infrared spectroscopic study of the effect of hydration on cationic lipid/DNA complexes.

作者信息

Choosakoonkriang Sirirat, Wiethoff Christopher M, Koe Gary S, Koe Janet G, Anchordoquy Thomas J, Middaugh C Russell

机构信息

The Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, USA.

出版信息

J Pharm Sci. 2003 Jan;92(1):115-30. doi: 10.1002/jps.10279.

Abstract

Infrared spectroscopy was used to examine the effect of dehydration on the structure of DNA and cationic lipid/DNA complexes (CLDCs). Information regarding the effect of hydration on the interface between the cationic lipids and DNA was obtained by following subtle but reproducible changes in vibrational bands arising from the DNA bases and phosphate backbone as well as bands from the lipid ester groups within the interfacial region of the bilayer. Dehydration of supercoiled plasmid DNA induces a transition from a B-conformation in solution to a mixed conformation in the dried state. Changes in vibrations of the bases upon drying suggest a change to an A-conformation whereas vibrations from the phosphate moieties suggest A- or C-forms. Vibrational changes in the ribose ring suggest adoption of a C-conformation. When CLDCs composed of either DOTAP (1,2-dioleoyl-3-trimethylammonium-propane) or DDAB (dioctadecyldimethylammonium bromide) cationic lipids with or without equimolar amounts of the helper lipids cholesterol or DOPE (1,2-dioleoylphosphatidylethanolamin) are dried, the DNA is still able to undergo these structural transitions suggesting a nonrigid CLDC structure. The effect of dehydration on these interfacial interactions was found to be dependent on the type of cationic lipid used as well as the type of helper lipid. In addition, this work provides a simple spectroscopic analytical approach that can be used for the characterization of nonviral vectors that has potential pharmaceutical utility.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验