Schmitt Michael
Lehrstuhl Mathematik und Informatik, Fakultät für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum, Germany.
Neural Comput. 2002 Dec;14(12):2997-3011. doi: 10.1162/089976602760805386.
We establish versions of Descartes' rule of signs for radial basis function (RBF) neural networks. The RBF rules of signs provide tight bounds for the number of zeros of univariate networks with certain parameter restrictions. Moreover, they can be used to infer that the Vapnik-Chervonenkis (VC) dimension and pseudodimension of these networks are no more than linear. This contrasts with previous work showing that RBF neural networks with two or more input nodes have superlinear VC dimension. The rules also give rise to lower bounds for network sizes, thus demonstrating the relevance of network parameters for the complexity of computing with RBF neural networks.
我们建立了适用于径向基函数(RBF)神经网络的笛卡尔符号法则版本。RBF符号法则为具有特定参数限制的单变量网络的零点数量提供了紧密的界限。此外,它们可用于推断这些网络的Vapnik-Chervonenkis(VC)维数和伪维数不超过线性。这与之前表明具有两个或更多输入节点的RBF神经网络具有超线性VC维数的工作形成对比。这些法则还给出了网络规模的下限,从而证明了网络参数与RBF神经网络计算复杂性的相关性。