Suppr超能文献

趋化因子受体CCR5的结构建模:对配体结合和选择性的影响

Structure modeling of the chemokine receptor CCR5: implications for ligand binding and selectivity.

作者信息

Paterlini M Germana

机构信息

Department of Medicinal Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Biophys J. 2002 Dec;83(6):3012-31. doi: 10.1016/S0006-3495(02)75307-1.

Abstract

The G-protein coupled receptor CCR5 is the main co-receptor for macrophage-tropic HIV-1 strains. I have built a structural model of the chemokine receptor CCR5 and used it to explain the binding and selectivity of the antagonist TAK779. Models of the extracellular (EC) domains of CCR5 have been constructed and used to rationalize current biological data on the binding of HIV-1 and chemokines. Residues spanning the transmembrane region of CCR5 have been modeled after rhodopsin, and their functional significance examined using the evolutionary trace method. The receptor cavity shares six residues with CC-chemokine receptors CCR1 through CCR4, while seven residues are unique to CCR5. The contribution of these residues to ligand binding and selectivity is tested by molecular docking simulations of TAK779 to CCR1, CCR2, and CCR5. TAK779 binds to CCR5 in the cavity formed by helices 1, 2, 3, and 7 with additional interactions with helices 5 and 6. TAK779 did not dock to either CCR1 or CCR2. The results are consistent with current site-directed mutagenesis data and with the observed selectivity of TAK779 for CCR5 over CCR1 and CCR2. The specific residues responsible for the observed selectivity are identified. The four EC regions of CCR5 have been modeled using constrained simulated annealing simulations. Applied dihedral angle constraints are representative of the secondary structure propensities of these regions. Tertiary interactions, in the form of distance constraints, are generated from available epitope mapping data. Analysis of the 250 simulated structures provides new insights to the design of experiments aimed at determining residue-residue contacts across the EC domains and for mapping CC-chemokines on the surface of the EC domains.

摘要

G蛋白偶联受体CCR5是嗜巨噬细胞型HIV-1毒株的主要共受体。我构建了趋化因子受体CCR5的结构模型,并利用该模型解释拮抗剂TAK779的结合和选择性。构建了CCR5细胞外(EC)结构域的模型,并用于阐释当前关于HIV-1与趋化因子结合的生物学数据。CCR5跨膜区域的残基已根据视紫红质进行建模,并使用进化追踪方法研究了它们的功能意义。该受体腔与CC趋化因子受体CCR1至CCR4共有六个残基,而七个残基是CCR5独有的。通过TAK779与CCR1、CCR2和CCR5的分子对接模拟,测试了这些残基对配体结合和选择性的贡献。TAK779在由螺旋1、2、3和7形成的腔内与CCR5结合,并与螺旋5和6有额外的相互作用。TAK779未与CCR1或CCR2对接。结果与当前的定点诱变数据以及观察到的TAK779对CCR5比对CCR1和CCR2的选择性一致。确定了导致观察到的选择性的特定残基。使用受限模拟退火模拟对CCR5的四个EC区域进行了建模。应用的二面角约束代表了这些区域的二级结构倾向。以距离约束形式存在的三级相互作用是根据可用的表位作图数据生成的。对250个模拟结构的分析为旨在确定跨EC结构域的残基-残基接触以及在EC结构域表面绘制CC趋化因子图谱的实验设计提供了新的见解。

相似文献

1
Structure modeling of the chemokine receptor CCR5: implications for ligand binding and selectivity.
Biophys J. 2002 Dec;83(6):3012-31. doi: 10.1016/S0006-3495(02)75307-1.
4
Elucidation of binding sites of dual antagonists in the human chemokine receptors CCR2 and CCR5.
Mol Pharmacol. 2009 Jun;75(6):1325-36. doi: 10.1124/mol.108.053470. Epub 2009 Mar 18.
6
Specificity for a CCR5 Inhibitor Is Conferred by a Single Amino Acid Residue: ROLE OF ILE198.
J Biol Chem. 2015 Apr 24;290(17):11041-51. doi: 10.1074/jbc.M115.640169. Epub 2015 Mar 12.
8
Structure prediction and molecular dynamics simulations of a G-protein coupled receptor: human CCR2 receptor.
J Biomol Struct Dyn. 2013;31(7):694-715. doi: 10.1080/07391102.2012.707460. Epub 2012 Aug 22.
9
Molecular interactions of CCR5 with major classes of small-molecule anti-HIV CCR5 antagonists.
Mol Pharmacol. 2008 Mar;73(3):789-800. doi: 10.1124/mol.107.042101. Epub 2007 Dec 20.
10
Molecular modeling and site-directed mutagenesis of CCR5 reveal residues critical for chemokine binding and signal transduction.
Eur J Immunol. 2000 Jan;30(1):164-73. doi: 10.1002/1521-4141(200001)30:1<164::AID-IMMU164>3.0.CO;2-X.

引用本文的文献

1
Design and Synthesis of Fluorescence-Labeled TAK779 Analogs as Chemical Probes.
Molecules. 2025 Jun 19;30(12):2655. doi: 10.3390/molecules30122655.
2
Targeting CCR5 as a Component of an HIV-1 Therapeutic Strategy.
Front Immunol. 2022 Jan 20;12:816515. doi: 10.3389/fimmu.2021.816515. eCollection 2021.
3
"Designer babies?!" A CRISPR-based learning module for undergraduates built around the CCR5 gene.
Biochem Mol Biol Educ. 2021 Jan;49(1):80-93. doi: 10.1002/bmb.21395. Epub 2020 Aug 10.
4
Extra-Low-Frequency Pulse Stimulated Conformational Change in Blood-Cell Proteins and Consequent Immune Activity Transformation.
IEEE J Transl Eng Health Med. 2020 Jan 9;8:4100113. doi: 10.1109/JTEHM.2020.2963894. eCollection 2020.
6
Different Patterns of HIV-1 Replication in MACROPHAGES is Led by Co-Receptor Usage.
Medicina (Kaunas). 2019 Jun 21;55(6):297. doi: 10.3390/medicina55060297.
8
Adaptive Gene Loss? Tracing Back the Pseudogenization of the Rabbit CCL8 Chemokine.
J Mol Evol. 2016 Aug;83(1-2):12-25. doi: 10.1007/s00239-016-9747-7. Epub 2016 Jun 15.
9
Maraviroc: a review of its use in HIV infection and beyond.
Drug Des Devel Ther. 2015 Oct 1;9:5447-68. doi: 10.2147/DDDT.S90580. eCollection 2015.
10
Impact of chemokines CCR5∆32, CXCL12G801A, and CXCR2C1208T on bladder cancer susceptibility in north Indian population.
Tumour Biol. 2014 May;35(5):4765-72. doi: 10.1007/s13277-014-1624-7. Epub 2014 Jan 16.

本文引用的文献

1
Fold prediction of helical proteins using torsion angle dynamics and predicted restraints.
Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3581-5. doi: 10.1073/pnas.052003799.
4
Structural determinants of CCR5 recognition and HIV-1 blockade in RANTES.
Nat Struct Biol. 2001 Jul;8(7):611-5. doi: 10.1038/89653.
5
A conserved Asn in transmembrane helix 7 is an on/off switch in the activation of the thyrotropin receptor.
J Biol Chem. 2001 Jun 22;276(25):22991-9. doi: 10.1074/jbc.M102244200. Epub 2001 Apr 18.
6
Design, synthesis, and discovery of a novel CCR1 antagonist.
J Med Chem. 2001 Apr 26;44(9):1429-35. doi: 10.1021/jm0004244.
8
The TXP motif in the second transmembrane helix of CCR5. A structural determinant of chemokine-induced activation.
J Biol Chem. 2001 Apr 20;276(16):13217-25. doi: 10.1074/jbc.M011670200. Epub 2001 Jan 25.
9
Modeling of loops in protein structures.
Protein Sci. 2000 Sep;9(9):1753-73. doi: 10.1110/ps.9.9.1753.
10
Identifying conformational changes with site-directed spin labeling.
Nat Struct Biol. 2000 Sep;7(9):735-9. doi: 10.1038/78956.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验