Vagedes Peter, Saenger Wolfram, Knapp Ernst-Walter
Institut für Chemie, Fachbereich Biologie, Pharmazie, Chemie, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany.
Biophys J. 2002 Dec;83(6):3066-78. doi: 10.1016/S0006-3495(02)75311-3.
The enzyme arylsulfatase A (ASA) occurs in solution as dimer (alpha(2)) above pH 6 and associates to octamers (alpha(2))(4) below pH 6. The crystal structure of ASA suggests that the (alpha(2))-(alpha(2))(4) equilibrium is regulated by protonation/deprotonation of Glu-424 located at the interface between (alpha(2)) dimers in the octamer. The reason for this assumption is that Glu-424 can be in two different conformers where it forms an intra or intermolecular hydrogen bond, respectively. In the present study we investigate this protein association process theoretically. The electrostatic energies are evaluated by solving the Poisson-Boltzmann equation for the inhomogeneous dielectric of the protein-water system for the dimer and octamer configurations. If a conventional surface energy term is used for the nonelectrostatic interactions, the absolute value of free energy of association fails to agree with experiment. A more detailed treatment that explicitly accounts for hydrophilic and hydrophobic character of the amino acids in the dimer-dimer interface of the octamer can explain this discrepancy qualitatively. The pH dependence of the computed association energy clearly demonstrates that the octamer is more stable at low pH if Glu-424 becomes protonated and forms an intermolecular hydrogen bond. We found a slight preference of Glu-424 to be in a conformation where its acidic group is fully solvent-exposed in the dimer state to form hydrogen bonds with water molecules. Application of the proton linkage model to calculate the association energy from the simulated data yielded results identical to the one obtained from the corresponding direct method.
芳基硫酸酯酶A(ASA)在pH值高于6时以二聚体(α(2))形式存在于溶液中,在pH值低于6时会缔合形成八聚体(α(2))(4)。ASA的晶体结构表明,(α(2))-(α(2))(4)平衡受位于八聚体中(α(2))二聚体界面处的Glu-424质子化/去质子化的调节。做出这一假设的原因是,Glu-424可以处于两种不同的构象,分别形成分子内或分子间氢键。在本研究中,我们从理论上研究了这种蛋白质缔合过程。通过求解蛋白质-水系统非均匀电介质中二聚体和八聚体构型的泊松-玻尔兹曼方程来评估静电能。如果将传统的表面能项用于非静电相互作用,缔合自由能的绝对值与实验结果不一致。一种更详细的处理方法,明确考虑八聚体中二聚体-二聚体界面处氨基酸的亲水和疏水特性,可以定性地解释这种差异。计算得到的缔合能对pH的依赖性清楚地表明,如果Glu-424质子化并形成分子间氢键,八聚体在低pH下更稳定。我们发现Glu-424略微倾向于处于一种构象,即在二聚体状态下其酸性基团完全暴露于溶剂中,以便与水分子形成氢键。应用质子连锁模型从模拟数据计算缔合能,得到的结果与相应直接方法得到的结果相同。