Mowlavi Arian, Neumeister Michael W, Wilhelmi Bradon J, Song Yao-Hua, Suchy Hans, Russell Robert C
Southern Illinois University School of Medicine, Institute for Plastic Surgery, Springfield, USA.
Plast Reconstr Surg. 2003 Jan;111(1):242-50. doi: 10.1097/01.PRS.0000034936.25458.98.
Amputated tissue maintained in a hypothermic environment can endure prolonged ischemia and improve replantation success. The authors hypothesized that local tissue hypothermia during the early reperfusion period may provide a protective effect against ischemia-reperfusion injury similar to that seen when hypothermia is provided during the ischemic period. A rat gracilis muscle flap model was used to assess the protective effects of exposing skeletal muscle to local hypothermia during ischemia only (p = 18), reperfusion only (p = 18), and both ischemia and reperfusion (p = 18). Gracilis muscles were isolated and exposed to hypothermia of 10 degrees C during 4 hours of ischemia, the initial 3 hours of reperfusion, or both periods. Ischemia-reperfusion outcome measures used to evaluate muscle flap injury included muscle viability (percent nitroblue tetrazolium staining), local edema (wet-to-dry weight ratio), neutrophil infiltration (intramuscular neutrophil density per high-power field), neutrophil integrin expression (CD11b mean fluorescence intensity), and neutrophil oxidative potential (dihydro-rhodamine oxidation mean fluorescence intensity) after 24 hours of reperfusion. Nitroblue tetrazolium staining demonstrated improved muscle viability in the experimental groups (ischemia-only: 78.8 +/- 3.5 percent, p < 0.001; reperfusion-only: 80.2 +/- 5.2 percent, p < 0.001; and ischemia-reperfusion: 79.6 +/- 7.6 percent, p < 0.001) when compared with the nonhypothermic control group (50.7 +/- 9.3 percent). The experimental groups demonstrated decreased local muscle edema (4.09 +/- 0.30, 4.10 +/- 0.19, and 4.04 +/- 0.31 wet-to-dry weight ratios, respectively) when compared with the nonhypothermic control group (5.24 +/- 0.31 wet-to-dry weight ratio; p < 0.001, p < 0.001, and p < 0.001, respectively). CD11b expression was significantly decreased in the reperfusion-only (32.65 +/- 8.75 mean fluorescence intensity, p < 0.001) and ischemia-reperfusion groups (25.26 +/- 5.32, p < 0.001) compared with the nonhypothermic control group (62.69 +/- 16.93). There was not a significant decrease in neutrophil CD11b expression in the ischemia-only group (50.72 +/- 11.7 mean fluorescence intensity, p = 0.281). Neutrophil infiltration was significantly decreased in the reperfusion-only (20 +/- 11 counts per high-power field, p = 0.025) and ischemia-reperfusion groups (23 +/- 3 counts, p = 0.041) compared with the nonhypothermic control group (51 +/- 28 counts). No decrease in neutrophil density was observed in the ischemia-only group (40 +/- 15 counts per high-power field, p = 0.672) when compared with the nonhypothermic control group (51 +/- 28 counts). Finally, dihydrorhodamine oxidation was significantly decreased in the reperfusion-only group (45.83 +/- 11.89 mean fluorescence intensity, p = 0.021) and ischemia-reperfusion group (44.30 +/- 11.80, p = 0.018) when compared with the nonhypothermic control group (71.74 +/- 20.83), whereas no decrease in dihydrorhodamine oxidation was observed in the ischemia-only group (65.93 +/- 10.3, p = 0.982). The findings suggest a protective effect of local hypothermia during early reperfusion to skeletal muscle after an ischemic insult. Inhibition of CD11b expression and subsequent neutrophil infiltration and depression of neutrophil oxidative potential may represent independent protective mechanisms isolated to local tissue hypothermia during the early reperfusion period (reperfusion-only and ischemia-reperfusion groups). This study provides evidence for the potential clinical utility of administering local hypothermia to ischemic muscle tissue during the early reperfusion period.
保存在低温环境中的离断组织能够耐受更长时间的缺血,并提高再植成功率。作者推测,早期再灌注期的局部组织低温可能对缺血再灌注损伤起到保护作用,类似于缺血期给予低温时的效果。采用大鼠股薄肌皮瓣模型评估仅在缺血期(n = 18)、仅在再灌注期(n = 18)以及缺血和再灌注期均给予局部低温(n = 18)时,骨骼肌暴露于局部低温的保护作用。分离股薄肌,在4小时缺血期、再灌注初始3小时或两个时期均将其暴露于10℃低温环境。用于评估肌皮瓣损伤的缺血再灌注结局指标包括再灌注24小时后的肌肉活力(硝基四氮唑蓝染色百分比)、局部水肿(湿重与干重之比)、中性粒细胞浸润(每高倍视野肌内中性粒细胞密度)、中性粒细胞整合素表达(CD11b平均荧光强度)以及中性粒细胞氧化潜能(二氢罗丹明氧化平均荧光强度)。硝基四氮唑蓝染色显示,与非低温对照组(50.7±9.3%)相比,各实验组的肌肉活力均有所提高(仅缺血组:78.8±3.5%,p < 0.001;仅再灌注组:80.2±5.2%,p < 0.001;缺血 - 再灌注组:79.6±7.6%,p < 0.001)。与非低温对照组(湿重与干重之比为5.24±0.31)相比,各实验组的局部肌肉水肿均减轻(湿重与干重之比分别为4.09±0.30、4.10±0.19和4.04±0.31;p < 0.001、p < 0.001和p < 0.001)。与非低温对照组(62.69±16.93)相比,仅再灌注组(平均荧光强度32.65±8.75,p < 0.001)和缺血 - 再灌注组(25.26±5.32,p < 0.001)的CD11b表达显著降低。仅缺血组中性粒细胞CD11b表达未显著降低(平均荧光强度50.72±11.7,p = 0.281)。与非低温对照组(51±28个/高倍视野)相比,仅再灌注组(20±11个/高倍视野,p = 0.025)和缺血 - 再灌注组(23±3个,p = 0.041)的中性粒细胞浸润显著减少。与非低温对照组(51±28个/高倍视野)相比,仅缺血组中性粒细胞密度未降低(40±15个/高倍视野,p = 0.672)。最后,与非低温对照组(71.74±20.83)相比,仅再灌注组(平均荧光强度45.83±11.89,p = 0.021)和缺血 - 再灌注组(44.30±11.80,p = 0.018)的二氢罗丹明氧化显著降低,而仅缺血组二氢罗丹明氧化未降低(65.93±10.3,p = 0.982)。这些发现表明,早期再灌注期的局部低温对缺血损伤后的骨骼肌具有保护作用。CD11b表达的抑制以及随后的中性粒细胞浸润和中性粒细胞氧化潜能的降低可能代表了早期再灌注期(仅再灌注组和缺血 - 再灌注组)局部组织低温所特有的独立保护机制。本研究为早期再灌注期对缺血肌肉组织给予局部低温的潜在临床应用提供了证据。