Suppr超能文献

Lead, chemical porphyria, and heme as a biological mediator.

作者信息

Fujita Hiroyoshi, Nishitani Chiaki, Ogawa Kazuhiro

机构信息

Laboratory of Environmental Biology, Hokkaido University School of Medicine, Sapporo 060-8638, Japan.

出版信息

Tohoku J Exp Med. 2002 Feb;196(2):53-64. doi: 10.1620/tjem.196.53.

Abstract

One of the most well-characterized symptoms of lead poisoning is porphyria. The biochemical signs of lead intoxication related to porphyria are delta-aminolevulinic aciduria, coproporphyrinuria, and accumulation of free and zinc protoporphyrin in erythrocytes. From the 1970s to the early 80s, almost all of the enzymes in the heme pathway had been purified and characterized, and it was demonstrated that delta-aminolevulinic aciduria is due to inhibition of delta-aminolevulinate dehydratase by lead. Lead also inhibits purified ferrochelatase; however, the magnitude of inhibition was essentially nil even under pathological conditions. Further study proved the disturbance of iron-reducing activity by moderate lead exposure. Far different from these two enzymes, lead failed to inhibit purified coproporphyrinogen oxidase, i.e., the mechanism of coproporphyrinuria has not yet been understood. During the 80s to the 90s, the effects of environmental hazards including lead were elucidated through stress proteins, indicating the induction of some heme pathway enzymes as stress proteins. At that time, gene environment interaction was another focus of toxicology, since gene carriers of porphyrias are considered to be a high-risk group to chemical pollutants. Toxicological studies from the 70s to the 90s focused on the direct effect of hazards on biological molecules, such as the heme pathway enzymes, and many environmental pollutants were proved to affect cytosolic heme. Recently, we demonstrated the mechanism of the heme-controlled transcription system, which suggests that the indirect effects of environmental hazards are also important for elucidating toxicity, i.e., the hazards can affect cell functions through such biological mediators as regulatory heme. It is, therefore, probable that toxicology in the future will focus on biological systems such as gene regulation and signal transduction systems.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验