Merton J S, de Roos A P W, Mullaart E, de Ruigh L, Kaal L, Vos P L A M, Dieleman S J
Holland Genetics, P.O. Box 5073, 6802 EB Arnhem, The Netherlands.
Theriogenology. 2003 Jan 15;59(2):651-74. doi: 10.1016/s0093-691x(02)01246-3.
With the introduction of multiple ovulation, embryo recovery and transfer techniques (MOET) plus embryo freeze-thaw methods in the early 1980s, the breeding industry has the tools in hand to increase the number of calves from donors of high genetic merit. In the early 1990s, the introduction of ovum pick-up followed by in vitro embryo production (OPU-IVP) opened up even greater possibilities. Using these technologies, we challenge biological mechanisms in reproduction. Where normally one oocyte per estrous cycle will develop to ovulation, now numerous other oocytes that otherwise would have degenerated are expected to develop into an embryo. Completion of oocyte growth and pre-maturation in vivo before final maturation both appear to be essential phases in order to obtain competence to develop into an embryo and finally a healthy offspring. In order to increase oocyte quality and quantity in embryo production technologies, current procedures focus primarily on improving the homogeneity of the population of oocytes with regard to growth and state of pre-maturation at the start of a treatment. In the case of MOET, dominant follicle removal (DFR) before superovulation treatment improves the number of viable embryos per session from 3.9 to 5.4 in cows but not in heifers and a prolonged period of follicle development obtained by preventing release of the endogenous LH surge increases the number of ova but not the number of viable embryos per session. In the case of OPU-IVP, the frequency of OPU clearly affects quantity and quality of the collected oocytes and FSH stimulation prior to OPU every 2 weeks resulted in 3.3 embryos per session. Analysis of 7,800 OPU sessions demonstrated that the oocyte yield is dependent on the team, in particular, the technician manipulating the ovaries. It is concluded that an increased understanding of the processes of oocyte growth, pre- and final maturation will help to improve the efficiency of embryo technologies. However, somewhere we will meet the limits dictated by nature.
随着20世纪80年代初多排卵、胚胎回收与移植技术(MOET)以及胚胎冻融方法的引入,育种行业掌握了增加具有高遗传价值供体所产犊牛数量的手段。20世纪90年代初,采卵后进行体外胚胎生产(OPU-IVP)技术的引入带来了更大的可能性。利用这些技术,我们挑战了生殖生物学机制。正常情况下,每个发情周期只有一个卵母细胞会发育至排卵,而现在,许多原本会退化的其他卵母细胞有望发育成胚胎。为了获得发育成胚胎并最终发育成健康后代的能力,卵母细胞在体内完成生长和预成熟,然后再进行最终成熟,这两个阶段似乎都是必不可少的。为了提高胚胎生产技术中卵母细胞的质量和数量,目前的程序主要集中在提高处理开始时卵母细胞群体在生长和预成熟状态方面的同质性。在MOET中,超排处理前去除优势卵泡(DFR)可使母牛每次获得的存活胚胎数量从3.9个增加到5.4个,但对小母牛无效,通过阻止内源性促黄体生成素峰的释放获得的卵泡发育延长周期可增加每次排卵的卵子数量,但不能增加存活胚胎数量。在OPU-IVP中,OPU的频率明显影响所采集卵母细胞的数量和质量,每2周在OPU前进行促卵泡素刺激,每次可获得3.3个胚胎。对7800次OPU操作的分析表明,卵母细胞产量取决于团队,特别是操作卵巢的技术人员。得出的结论是,对卵母细胞生长、预成熟和最终成熟过程的进一步了解将有助于提高胚胎技术的效率。然而,在某些方面我们将遇到自然所设定的限制。