Suppr超能文献

基因选择:一种贝叶斯变量选择方法。

Gene selection: a Bayesian variable selection approach.

作者信息

Lee Kyeong Eun, Sha Naijun, Dougherty Edward R, Vannucci Marina, Mallick Bani K

机构信息

Department of Statistics, Texas A&M University, College Station 77843-3143, USA.

出版信息

Bioinformatics. 2003 Jan;19(1):90-7. doi: 10.1093/bioinformatics/19.1.90.

Abstract

UNLABELLED

Selection of significant genes via expression patterns is an important problem in microarray experiments. Owing to small sample size and the large number of variables (genes), the selection process can be unstable. This paper proposes a hierarchical Bayesian model for gene (variable) selection. We employ latent variables to specialize the model to a regression setting and uses a Bayesian mixture prior to perform the variable selection. We control the size of the model by assigning a prior distribution over the dimension (number of significant genes) of the model. The posterior distributions of the parameters are not in explicit form and we need to use a combination of truncated sampling and Markov Chain Monte Carlo (MCMC) based computation techniques to simulate the parameters from the posteriors. The Bayesian model is flexible enough to identify significant genes as well as to perform future predictions. The method is applied to cancer classification via cDNA microarrays where the genes BRCA1 and BRCA2 are associated with a hereditary disposition to breast cancer, and the method is used to identify a set of significant genes. The method is also applied successfully to the leukemia data.

SUPPLEMENTARY INFORMATION

http://stat.tamu.edu/people/faculty/bmallick.html.

摘要

未标注

通过表达模式选择显著基因是微阵列实验中的一个重要问题。由于样本量小且变量(基因)数量众多,选择过程可能不稳定。本文提出了一种用于基因(变量)选择的分层贝叶斯模型。我们使用潜在变量将模型专门化为回归设置,并使用贝叶斯混合先验进行变量选择。我们通过为模型的维度(显著基因数量)分配先验分布来控制模型的大小。参数的后验分布没有显式形式,我们需要使用截断采样和基于马尔可夫链蒙特卡罗(MCMC)的计算技术相结合的方法来从后验中模拟参数。贝叶斯模型足够灵活,既能识别显著基因,又能进行未来预测。该方法通过cDNA微阵列应用于癌症分类,其中BRCA1和BRCA2基因与乳腺癌的遗传易感性相关,该方法用于识别一组显著基因。该方法也成功应用于白血病数据。

补充信息

http://stat.tamu.edu/people/faculty/bmallick.html

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验