Hongping Pei, Yong Wang
Department of Environmental Science, Zhejiang University, Xixi Campus, 310028 Hangzhou, China.
Water Res. 2003 Jan;37(2):416-28. doi: 10.1016/s0043-1354(02)00287-7.
The models such as the eutrophication ecosystem model of West Lake, Hangzhou (EEM), are always used to make policy decisions for eutrophication management. Thus it is important to know the uncertainty in the model predictions due to the combined effects of uncertainty in the full set of input variables, and the individual input parameters whose variations have the greatest effect on variations in model predictions. In this study, randomized methods based on Monte Carlo technique have been developed and applied to the model (EEM). The technique consists of parameter sensitivity analysis, randomly sampling from underlying probability distributions and multivariate regression analysis. With this technique, model uncertainties during modeling are clarified and their propagation evaluated. Results show that among the five input parameters selected for uncertainty analysis, the settling rate of algae SVS and water temperature TEM have the largest contribution to model prediction uncertainty of the model outputs (PC, PS and PHYT).
诸如杭州西湖富营养化生态系统模型(EEM)等模型,一直被用于为富营养化管理制定政策决策。因此,了解由于全套输入变量的不确定性以及对模型预测变化影响最大的各个输入参数的综合作用而导致的模型预测不确定性非常重要。在本研究中,基于蒙特卡罗技术的随机方法已被开发并应用于该模型(EEM)。该技术包括参数敏感性分析、从基础概率分布中随机抽样以及多元回归分析。通过该技术,建模过程中的模型不确定性得以明确,并对其传播进行评估。结果表明,在为不确定性分析所选的五个输入参数中,藻类沉降速率SVS和水温TEM对模型输出(PC、PS和PHYT)的模型预测不确定性贡献最大。