Suppr超能文献

一种耐药性人类免疫缺陷病毒1型蛋白酶变体的生存能力:为更好的抗病毒治疗提供结构见解。

Viability of a drug-resistant human immunodeficiency virus type 1 protease variant: structural insights for better antiviral therapy.

作者信息

Prabu-Jeyabalan Moses, Nalivaika Ellen A, King Nancy M, Schiffer Celia A

机构信息

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester 01605, USA.

出版信息

J Virol. 2003 Jan;77(2):1306-15. doi: 10.1128/jvi.77.2.1306-1315.2003.

Abstract

Under the selective pressure of protease inhibitor therapy, patients infected with human immunodeficiency virus (HIV) often develop drug-resistant HIV strains. One of the first drug-resistant mutations to arise in the protease, particularly in patients receiving indinavir or ritonavir treatment, is V82A, which compromises the binding of these and other inhibitors but allows the virus to remain viable. To probe this drug resistance, we solved the crystal structures of three natural substrates and two commercial drugs in complex with an inactive drug-resistant mutant (D25N/V82A) HIV-1 protease. Through structural analysis and comparison of the protein-ligand interactions, we found that Val82 interacts more closely with the drugs than with the natural substrate peptides. The V82A mutation compromises these interactions with the drugs while not greatly affecting the substrate interactions, which is consistent with previously published kinetic data. Coupled with our earlier observations, these findings suggest that future inhibitor design may reduce the probability of the appearance of drug-resistant mutations by targeting residues that are essential for substrate recognition.

摘要

在蛋白酶抑制剂疗法的选择压力下,感染人类免疫缺陷病毒(HIV)的患者常常会产生耐药性HIV毒株。蛋白酶中最早出现的耐药性突变之一,尤其是在接受茚地那韦或利托那韦治疗的患者中,是V82A,它会损害这些抑制剂及其他抑制剂的结合,但能使病毒保持存活。为了探究这种耐药性,我们解析了三种天然底物和两种商业药物与一种无活性的耐药突变体(D25N/V82A)HIV-1蛋白酶形成复合物的晶体结构。通过对蛋白质-配体相互作用的结构分析和比较,我们发现缬氨酸82与药物的相互作用比与天然底物肽的相互作用更为紧密。V82A突变损害了与药物的这些相互作用,同时对底物相互作用影响不大,这与先前发表的动力学数据一致。结合我们早期的观察结果,这些发现表明,未来的抑制剂设计可以通过靶向对底物识别至关重要的残基来降低耐药性突变出现的概率。

相似文献

4
Crystal structures of HIV protease V82A and L90M mutants reveal changes in the indinavir-binding site.
Eur J Biochem. 2004 Apr;271(8):1516-24. doi: 10.1111/j.1432-1033.2004.04060.x.
6
Resistance to HIV protease inhibitors: a comparison of enzyme inhibition and antiviral potency.
Biochemistry. 1998 Jun 16;37(24):8735-42. doi: 10.1021/bi972555l.
8
Comparing the accumulation of active- and nonactive-site mutations in the HIV-1 protease.
Biochemistry. 2004 Sep 28;43(38):12141-51. doi: 10.1021/bi049459m.
10
Lack of synergy for inhibitors targeting a multi-drug-resistant HIV-1 protease.
Protein Sci. 2002 Feb;11(2):418-29. doi: 10.1110/ps.25502.

引用本文的文献

1
Comprehending the Structure, Dynamics, and Mechanism of Action of Drug-Resistant HIV Protease.
ACS Omega. 2023 Mar 7;8(11):9748-9763. doi: 10.1021/acsomega.2c08279. eCollection 2023 Mar 21.
3
Elasticity-Associated Functionality and Inhibition of the HIV Protease.
Adv Exp Med Biol. 2022;1371:79-108. doi: 10.1007/5584_2021_655.
4
Crystal structures of inhibitor complexes of M-PMV protease with visible flap loops.
Protein Sci. 2021 Jun;30(6):1258-1263. doi: 10.1002/pro.4072. Epub 2021 Apr 8.
5
Structural Impacts of Drug-Resistance Mutations Appearing in HIV-2 Protease.
Molecules. 2021 Jan 25;26(3):611. doi: 10.3390/molecules26030611.
6
Impacts of drug resistance mutations on the structural asymmetry of the HIV-2 protease.
BMC Mol Cell Biol. 2020 Jun 23;21(1):46. doi: 10.1186/s12860-020-00290-1.
7
Highly Drug-Resistant HIV-1 Protease Mutant PRS17 Shows Enhanced Binding to Substrate Analogues.
ACS Omega. 2019 May 31;4(5):8707-8719. doi: 10.1021/acsomega.9b00683. Epub 2019 May 17.
8
An →* Interaction in the Bound Substrate of Aspartic Proteases Replicates the Oxyanion Hole.
ACS Catal. 2019 Feb 1;9(2):1464-1471. doi: 10.1021/acscatal.8b04142. Epub 2018 Nov 29.
9
A substrate selected by phage display exhibits enhanced side-chain hydrogen bonding to HIV-1 protease.
Acta Crystallogr D Struct Biol. 2018 Jul 1;74(Pt 7):690-694. doi: 10.1107/S2059798318006691. Epub 2018 Jun 27.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
CHAIN: a crystallographic modeling program.
Methods Enzymol. 1997;277:158-73. doi: 10.1016/s0076-6879(97)77011-3.
5
Lack of synergy for inhibitors targeting a multi-drug-resistant HIV-1 protease.
Protein Sci. 2002 Feb;11(2):418-29. doi: 10.1110/ps.25502.
7
Curling of flap tips in HIV-1 protease as a mechanism for substrate entry and tolerance of drug resistance.
Structure. 2000 Dec 15;8(12):1259-65. doi: 10.1016/s0969-2126(00)00537-2.
8
How does a symmetric dimer recognize an asymmetric substrate? A substrate complex of HIV-1 protease.
J Mol Biol. 2000 Sep 1;301(5):1207-20. doi: 10.1006/jmbi.2000.4018.
10
Validation of protein crystal structures.
Acta Crystallogr D Biol Crystallogr. 2000 Mar;56(Pt 3):249-65. doi: 10.1107/s0907444999016364.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验